Posts tagged with "Robots":

Placeholder Alt Text

Researchers and robots team up to build innovative pavilion in a German garden

Installed on the grounds of the 2019 Bundesgartenschau (BUGA) biennial horticulture show in Heilbronn, Germany, the BUGA Fibre Pavilion is a the product of years of research in biomimicry at the University of Stuttgart’s Institute for Computational Design and Construction (ICD) and the Institute for Building Structures and Structural Design (ITKE). Biomimetic design aims to produce structures, materials, and effects after principles and processes found in nature. In other words, the BUGA Pavilion is a not-so-primitive hut inspired by fauna rather than flora. Specifically, the pavilion’s 60 woven structural components are inspired by fibrous biological composites like cellulose and chitin, which form insect wings and exoskeletons. Evolved over millions of years, these naturally occurring organic fibers are incredibly efficient and incredibly strong. Adapting this principle to architecture, the Stuttgart team created the 4,300-square-foot BUGA Fibre Pavilion using half-a-million-square-feet of a human-made synthetic equivalent—glass- and carbon-fibers weaved together by a robot working between two rotating scaffolds. The resulting hollow warped cylindrical elements, which each took four-to-six hours to produce, resemble a toy finger trap. Workers connected them together on-site to form a dome shape spanning more than 75 feet. An appropriately advanced skin, translucent ethylene tetrafluoroethylene (ETFE), covers the fibrous synthetic muscle system. The design process required intense computationally-powered iteration. Although complex, the manufacturing process is wondrously efficient, producing zero waste and obviating the need for any formwork. It’s also quite strong. Five times lighter than a comparable steel structure, each component can withstand 250 kilonewtons of compression force—or, as the design team notes, “the weight of more than 15 cars.” The fabrication method recalls the futuristic 3D printer featured in the opening sequence of the HBO sci-fi series West World. The comparison is apt because the pavilion truly feels like something from the future. Indeed, as the researchers note, “Only a few years ago, this pavilion would have been impossible to design or build.” Thanks to the dramatic advancements in material science and our powers of scientific observation, the Stuttgart team was able to unite human innovation with natural principles to create something beautiful that perhaps transcends both science and art.
Placeholder Alt Text

Mundos Alternos unfolds multiple Latinx futures at the Queens Museum

Sounding resonantly across the dimly lit atrium that houses the Queens Museum’s 1964 Panorama of the City of New York, the voice of Guadalupe Maravilla (born Irvin Morazán in San Salvador) shifted seamlessly between Spanish and English as he recounted a formative childhood experience: In 1984, he migrated from El Salvador to Texas to escape the violence of the Salvadorian Civil War. At ten years old, Maravilla had traveled without an adult save for the coyote who had been hired to escort them across the border. The performance was a crowning moment for an equally powerful exhibition, Mundos Alternos: Art and Science Fiction in the Americas, on view through August 18. Clad in a billowing polyester costume that cartoonishly mimicked a person being carried by a lime-green alien, Maravilla recited the monologue while accompanied by three other players, two of them dressed metallic silver bodysuits and faux taxidermied bear heads, and the third in a white balaclava and a cape adorned with sculpted rabbit heads. Such regalia is typical of Maravilla’s performances, which combine Mayan cosmologies with the artist’s personal history. For this performance—intended to “cleanse political phobias and blockages of New Yorkers”—the actors alternately sat, moved about, and chanted among the panorama’s rivers and bay, thereby enacting the title of the piece, Walk on Water. Bringing together over thirty Latin American and Latinx artists, Mundos Alternos focuses on works that engage the many allegorical lenses afforded by science fiction to examine the multitude of possibilities for the ongoing struggle of Latinx immigrant populations. The works on view encompass a sprawling array of mediums—from video, to sculpture, to installation—and take on an equally wide range of approaches to addressing the shared, thematic subjects of colonization, alienation, and diaspora. Curators Robb Hernández, Joanna Szupinska-Myers, and Tyler Stallings originally organized the exhibition for UCR ARTS at the University of California, Riverside, as part of the larger Pacific Standard Time: LA/LA presentation that opened in September 2017 and ran through January 2018. According to the Queens Museum’s website, they hope to extend the run of Mundos Alternos either within or outside of the U.S. in order to continue a “conversation about speculative aesthetics at a time when immigrant futures are facing a crossroads.” Among the many highlights of the presentation are a reading room where visitors can peruse classic and contemporary works of science fiction published in English and Spanish. Inside a small theater, Alex Rivera’s film Sleep Dealer (2008) is screened on a loop, which astutely revises the heroic protagonist tropes of Blade Runner and The Matrix to apply to the plight of migrant workers. Indeed, the exhibition is aptly divided into an array of physically and conceptually linked realms—or “constellations,” as the curators refer to them—where viewers are free to enter, peer into, or ignore a diverse array of interior spaces. The museum’s central, sky-lit foyer is dedicated to a kinetic sculpture by Chico MacMurtrie and Amorphic Robot Works (ARW) titled Organic Arches (Time Traveler) (2014/2017). Here, sixteen tendrils constructed from electric valves sheathed in diaphanous white fabric hang just above the floor. When “closed,” each cylinder is coiled into loops and the structure constitutes a static, impenetrable scaffold until it is activated at predetermined times, when a computer system slowly expands the contracted limbs of each tube. Extending into the archway of its title, the “opened” sculpture briefly allows visitors to pass through its ribcage-like tunnel before curling back into stasis. By far the most immersive work in the exhibition is Rigo 23’s multi-room installation, where manifestos of the Zapatista Army of National Liberation are scrawled among emblems of the movement, which take the form of snails, butterflies, balaclava-clad activists, and ears of corn. Queremos un mundo donde quepan muchos mundos, states one of the paintings hung in the final vitrine of the installation: “We want a world in which many worlds fit.” Maravilla’s July 21st Walk on Water performance came at an especially pertinent moment in the realm of New York cultural institutions; four days earlier, an Artforum Slant garnered widespread attention for calling on artists participating in the 2019 Whitney Biennial to withdraw their contributions to the exhibition as a form of protest against the museum’s refusal to remove billionaire Warren B. Kanders from their board of trustees. Kanders is the owner of Safariland Group, a distributor of law enforcement equipment including the brand of tear gas that has been used on Central American refugees attempting to cross the U.S.–Mexico border. By the time Maravilla entered the panorama in his human-alien costume, eight artists had demanded the removal of their work from the biennial, and tens of others had publicly advocated for Mr. Kanders’s resignation. While Kanders eventually resigned from his position and the eight protesting artists will remain in the biennial, the renewed discussion regarding the stewardship of public art collections by progenitors of state violence has galvanized many facets of an art world known for its implicit insularity. With its terminus yet to be determined, Mundos Alternos thus constitutes a prescient landscape of possible dystopias that remain unrealized yet highly possible, should the populations in positions of power succumb to the forces of greed or inertia. The spectators lining the panorama for Maravilla’s soliloquy were faced with the traumas inflicted by such dystopic scenarios. Maravilla’s performance, the calm narration of his own transience and pain, reminds us that the retention of our humanity is a choice we must actively pursue, and that the struggle for survival increasingly required of globally marginalized demographics will be fought not only at far off borders but within the private and public spaces of our own cities.
Placeholder Alt Text

GXN thinks the future of construction could be flying 3D printers

Most 3D printers, no matter their size, operate in a pretty similar way: they move along a grid to deposit material, sliding on axes in a fixed manner within a frame. Even those with more flexible arms remain fixed at a point. GXN, the research-focused spinoff of the Danish architecture firm 3XN, is looking to change that, using high-tech robotics to “break the grid” and offer new possibilities in additive manufacturing. Along with the Dansk AM Hub, a foundation that supports experimentation in additive manufacturing, and MAP architects, GXN has been hacking printers—both mechanically and virtually—to create prototypes that can move through space on land, in the air, and underwater. Their speculative Break the Grid proposal imagines a near future where our buildings and infrastructure can be created and maintained with the help of autonomous, robotic 3D printers that move beyond the normal confines of additive manufacturing devices. The team started by asking themselves, “Where could we take this if we let our imagination run a little bit free, and what sort of impact would we imagine additive manufacturing having in a positive way in the built environment?” said Kåre Stokholm Poulsgaard, Head of Innovation at GXN. “The goal was to learn something about this," said Stokholm Poulsgaard, “so we had this idea that we wanted to be able to set the printers free, so we needed to understand robotics and mobility, and what this means." GXN took a hacker’s approach to the project. They used existing products, like simple stepper motors and 3D printers already available on the market, to create both mechanical and virtual prototypes. “We wanted to create something new, something that we haven't seen before, but we also wanted to make sure that whatever we created was tied into existing technologies and capabilities,” explained Stokholm Poulsgaard. Along with roboticist Teodor Petrov, the GXN team began creating a series of robots, using both cheaply available parts and bespoke components. They also created a variety of digital models and plans, virtual hacks, that in their final form look like something out of a sci-fi video game. The team behind Break the Grid has selected three main areas where they see autonomous 3D printers as prime opportunities. The first of these is in addressing global problems in maintaining infrastructure across the globe. It’s estimated that in the U.S. alone, unaddressed issues with highways, bridges, and the like could result in $4 trillion in losses to the economy by 2025. GXN imagines walking robots that could repair microcracks in concrete infrastructure before they eventually become far larger by allowing in water and oxygen, causing corrosion. Inspired by studies done at Rutgers and Bingham Universities, the team imagined a 3D printing robot that deposits the fungus Trichoderma reesei, which encourages calcium carbonate to form, filling in this microcracks and staving off further damage, especially in smaller and more isolated parts of the road. GXN also proposes using 3D printing robots on the seafloor to help minimize the damage from coastal storms by 3D printing artificial reefs made from a bio-based cement derived from oysters as a binder. For addressing climate issues on land—or above it, as it were—they imagined drone-printers that can help repair, enhance, and build sections of high-rise facades in order to support their thermal bridges, which are, the team claims, responsible for as much as 30 percent of a building’s heat loss. GXN hopes that robotic additive manufacturing devices like these could someday work alongside humans to change how construction happens. “Construction is a very large sector in society,” said Stokholm Poulsgaard, “and it's one of the last large sectors to see comprehensive automation. While all these other sectors are seeing very large productivity growth, the built environment is absolutely flat-lining.” Still, it’s important not to forget that there are many workers in construction. Stokholm Poulsgaard says it’s not about replacing human workers, but about understanding how technology can work alongside people. “Let's say we have these robots on a building site,” he said, “how do they interface with traditional construction techniques and the people working there in ways that add value and are meaningful? Because robots can do some things better than humans, that goes for artificial intelligence as well, but there's a lot of stuff it cannot do. How do we let the robots do what they do best to free up people to do what they do best?” The other hope, besides increases in productivity, safety, and efficiency is added design freedom for architects. “Additive manufacturing promises variation at less or no extra cost,” said Stokholm Poulsgaard, “because they allow you to link up with parametric programs and then mass produce variations of the same components, for example, at a very low cost compared to if you had to do them by hand or traditional means.” At the moment mobile 3D printing remains purely speculative, but GXN hopes that drones and ROVs will become normal occurrences on construction sites in the near future.
Placeholder Alt Text

Iris van Herpen collaborates with architects for hypnotizing couture presentation

Since Dutch designer Iris van Herpen opened her eponymous atelier in 2007, the brand has become the face of high-tech fashion. Often the first to embrace new technologies like laser cutting and 3D printing in her fluid and futuristic forms, van Herpen has designed pieces worn by the likes of Solange and Rihanna, and, on the streets of Paris this past July 1st, Céline Dion During the presentation of van Herpen’s latest collection during Paris’s Haute Couture week, titled Hypnosis, her already alien and energetic forms came alive. The clothing literally moved on the models as they passed through a large, also motorized, ring hung in the Élysée Montmartre.  Inspired by the fluidity and complexity of natural forms, van Herpen designed 19 different looks made from traditional materials like silk and satin, as well as aluminum and stainless steel. The fabric itself was guided by engineering, with plotter machines and laser cutters working alongside hand stitching. What really stood out, though, were the actual moving parts. Dresses were mounted with metal pieces and fabric flanges that rotated around, and in the center of the runway was a large moving circle, a motorized ring called Omniverse by kinetic sculptor Anthony Howe, a "portal" designed to evoke the “universal life cycle,” according to the artist. The dresses’ moving components were devised by experimental sculptor Philip Beesley (PB), along with architect Rolf Seifert. The duo behind PB, who also led the design of the moving metal augmentations that sprout off the garments, generally works on public buildings and art, along with experimental installations—including immersive textile environments. The pair also have architectural relationships with the Living Architecture Systems Group, the School of Architecture and Faculty of Engineering at the University of Waterloo, the architectural practice of Rolf Seifert, and Riverside Architectural Press. It's hard to think of a technological setting so radical since Alexander McQueen's industrial robots to spray paint and dance along with the model in the Spring-Summer 1999 show. The results of these collaborations shook up viewers along the stage and on Instagram alike, as they pushed the bar even higher for integrating fabrication and robotics technology in haute couture, both on the garments and off. Hopefully, with Liz Diller, Kazuyo Sejima, and Cini Bouery designing for Prada and a trained-architect behind Louis Vuitton, we'll be seeing architectural thinking entering the fashion world both high and low more in the future.
Placeholder Alt Text

Exhibit Columbus's inaugural fellow program will go high-tech

Exhibit Columbus, the annual celebration of mid-century and contemporary design in Columbus, Indiana, will be showing off new possibilities of materials that unify support and envelope. This August,  two of the festival's six University Design Research Fellows will present this work as part of a brand new fellowship program.  Marshall Prado, a professor at the University of Tennessee, is creating a 30-foot-tall tower out of a carbon-and-glass fiber spun by robots. To manufacture Filament Tower, strands of the material were rotated on a steel frame and injected with resin, which is cured and then baked to increase its tensile and compressive strength. After cooling, the 27 computationally-designed components were removed from the steel frame and made to support themselves. The design was inspired both by historic architecture—akin to the churches of Eero Saarinen—and by biology. Filament Tower mimics the integrated, fibrous matrices of protein structures native to the connective tissues found in plants and animals, all while maintaining transparency. Christopher Battaglia, a research fellow at Ball State University, turned his skills to a different material for Exhibit Columbus: concrete. In DE|stress, a 35-foot-long, 9.5-foot-tall, pavilion, Battaglia critiques the common approach to prefab concrete construction, which often sacrifices either strength and control over form. DE|Stress is made from 110 curved panels created in a green-sand casting method, where the concrete, made of silica sand and bentonite clay, is worked while still wet. The same CNC robot that produced the mold, which is easily recyclable, later prints the material, giving the process a high degree of efficiency. “There’s no material waste in the form-making at all,” Battaglia claimed in a report from Autodesk. He also said that 3D printing gives a far greater control over shaping the vault-like structure, which is designed to encourage communal occupation and encounters.

Robotic Storage Design

A new product design contest on Desall.com is now available: Pharmathek and Desall invite you to design the new case of the Sintesi robotized warehouse dedicated to the pharmacy world.

Pharmathek is looking for the new design of the case of the Sintesi robotized warehouse and of the automatic loader Pharmaload, installed inside the pharmacies and developed to facilitate the pharmacist and her/his collaborators in the daily management of the medicines and their data.

For more info: https://bit.ly/PharmathekContest

Contest timeline

Upload phase: 28th June 2019 – 03rd October 2019 (1.59 PM UTC)

Client Vote: from 03rd October 2019

Winner announcement: approximately by the end of December 2019

Total awards

€4000

Participation is free of charge and open to all creative people at least 18 years or older.

PHARMATHEK

Pharmathek is a company that designs, produces and installs robotic storage systems for pharmacies.

Born within the Th.Kohl Group, a company with a 100 years of experience in the pharmacy sector, since its foundation the company has worked to offer its customers increasingly innovative and high-performance solutions, able to respond better and better to the needs of the contemporary pharmacy.

Among the values ​behind Pharmathek solutions there are efficiency, speed and reliability.

But even before that, flexibility: the Pharmathek robotic storage systems can be configured according to the needs of the individual company.

This is why Pharmathek customers include not only pharmacies but also hospital pharmacies and medicine wholesalers.

DESALL

Desall.com is an open innovation platform dedicated to design and innovation, that offers to companies a participatory design tool involving in the creative process an international community coming from all over the world. To date Desall gathers more than 100000 creatives from over 210 countries and has collaborated with international brands like Luxottica, Whirlpool, Electrolux, ALESSI, Enel, Leroy Merlin, KINDER, Barilla, illy, Chicco, Mondadori and many more.

Thanks to the mingling of different cultural backgrounds and creative industries, the Desall community is able to provide high-quality project solutions for every product development phase requested by the client, from concept to product design, from naming to packaging.

Placeholder Alt Text

Could jump roping robots change how we think about architectural drawing?

"Movement was always an underlying instigator to how I look at form," explains architect Amina Blacksher, who began ballet at age six. Her work crosses boundaries and unifies seemingly disparate practices, as she now, among many other things, uses the tools and methods of an architect to investigate the place of robots in our lives and the relationship between the analog and digital. Most recently, her explorations of movement and robotics have taken the form of two arms that join humans to play jump rope.

Two industrial robotic arms from ABB, jointed similarly to a human's, swing ropes in partnership with a human while people Double Dutch amid the ropes. Custom 3D-printed grips are attached to the robotic manipulators to hold on to the ropes but also to allow for human error, like stepping on a rope, without toppling over the robots.

The Double Dutch project began at Princeton University during the Black Imagination Matters incubator and Blacksher has continued to develop the project, exploring the cultural history of jumping—from children’s games to the Maasai jumping tradition, trying to evoke that “cleansing moment” when suspended in the air.

The Double Dutch robots reveal the intelligence inherent in our bodies: the fact that children’s games possess so much kinetic knowledge that we often overlook and that there is such a profound complexity to sensing and moving through our world. "Rhythm is something we often take for granted," said Blacksher, “but even a simple circle with a jump rope is not a continuous velocity. It’s weighted, it has a rhythmic bias.” It requires choreography, something that is seemingly so "simple" for humans, children even, but incredibly difficult for robots. And these ironies and oppositions are revealing.

The Double Dutch project is part of Blacksher’s mission to help us realize new relationships to robots and a more complicated relationship to the typically divided analog and digital. It's also about normalizing what is likely to become increasingly commonplace human-robot relationships.

As an architectural problem, robots could change how we make and understand space. "No arc is absolutely the same," Blacksher said of the swings made by the jump rope robot. “I’m compiling these micro-deviations to create a pseudospace that could be 3D printed or spun." In a way, the arcs these robots make are a form of architectural drawing, but a drawing through physical space in three dimensions. This is leading Blacksher to ask: “How do you make a drawing that has a duration?”

Architecture began with hand drawing and has obviously been radically impacted by 2D CAD software, then powerful 3D software suites, and more recent technologies like virtual reality. Robotics has the power of "redefining what a drawing is," said Blacksher, moving it into 3D space and “using the body again in the generation of a drawing in a way that makes the design process exponentially more intelligent.” By using digital and physical technology in real space and establishing a unique circuit of the relationships between code, movement, embodiment, image, and space, architects might find new tools and new ways of thinking through design problems. "It’s in the relationship between the analog and digital where I’m interested in finding form."

Blacksher’s research is ongoing. Some of it will be incorporated into future classes at Columbia’s Graduate School of Architecture, Planning and Preservation, and updated Double Dutch robots will be exhibited in Los Angeles this fall. Blacksher hopes to "raise the stakes of holding robots to accountability in terms of rhythmic precision, and their relationship to  space and time." She hopes we can see a future where "robots are friends, not just something purely functional."

Placeholder Alt Text

Could buildings be evolved instead of designed?

What if we could “breed” buildings to be more efficient? That’s the provocation by artist, designer, and programmer Joel Simon, who was inspired by the potentials of 3D printing and other emergent digital manufacturing technologies, as well as his background in computer science and biology, to test a system of automated planning. With a series of algorithms of two types—“graph-contraction and ant-colony pathing”—Simon is able to “evolve” optimized floor plans based off different constraints, using a genetic method derived from existing neural network techniques. The results are, according to a white paper he put out, “biological in appearance, intriguing in character, and wildly irrational in practice.” The example he gives is based off an elementary school in Maine. Most schools are long corridors with classrooms coming off the sides, a highly linear design. By attempting to set different parameters, like minimizing traffic flow and material usage, or making the building easier to exit in the event of an emergency, the algorithms output different floor plans, developed on a genetic logic. But this optimization is done “without regard for convention [or] constructability,” and adding other characteristics, like maximizing windows for classrooms, led to complicated designs with numerous interior courtyards. For projects like schools, he suggests, class schedules and school layouts could be evolved side-by-side, creating a building optimized around traffic flow. While perhaps currently impractical (there’s no getting rid of architects—or rectangles— yet!), Simon hopes that the project will push people to think about how building with emergent technologies—like on-site 3D printing, CNC, self-assembling structures, and robotic construction—can be integrated within the design process. These technologies have promises for new forms that are hard to design for, he believes, and potentials that can’t be realized through existing design methods. As he told Dezeen: "Most current tools and thinking are stuck in a very two-dimensional world…[but,] designing arbitrary 3D forms optimized for multiple objectives—material usage, energy efficiency, acoustics—is simply past human cognitive ability."

Open Call: R+D for the Built Environment Design Fellowship

R+D for the Built Environment, is sponsoring a 6-month, paid, off-site design fellowship program starting this summer. We're looking for four candidates in key R+D topic areas:
  1. Building material science
  2. 3D printing, robotics, AR/VR
  3. AI, machine learning, analytics, building intelligence
  4. Quality housing at a lower cost
  5. Building resiliency and sustainability
  6. Workplace optimization
  7. Adaptable environments
We're excited to support up-and-coming designers, engineers, researchers (and all the disciplines in between!) advance their work and provide them with a platform to share their ideas. Follow the link below for more details and instructions on how to apply. Applications are due by May 31, 2019. https://sites.google.com/view/rdbe-design-fellowship-2019/home  
Placeholder Alt Text

Brooklyn-based startup is using robots for rebar assembly

Two Brooklyn-based construction entrepreneurs began their business with a simple observation: steel rebar, used in concrete construction throughout the world, isn't always easy to work with. Ian Cohen and Daniel Blank noticed this when they were watching wind turbines being erected. “Watching the process of people manually moving these huge, heavy objects looked dangerous and difficult,” Cohen explained. Often made from scrap metal, rebar is a “really sharp, dirty material for humans to interact with.” They pivoted their URBAN-X accelerated startup, Toggle, which they founded two-and-a-half years ago with a focus on renewable energy, to the even more fundamental work of making the production of reinforced concrete faster and safer through automation. Rebar steel is “traditionally manually picked up and erected into cages and shaped to hold reinforced concrete structures in place,” explained Cohen. These cages may be as long as 50 feet. That’s hard work for humans but is exactly the kind of job robots are suited for: taking very heavy things and moving them precisely. Using customized industrial robots, Toggle made modifications that allow the automated arms to “achieve bespoke movements.” The design-to-build process is also streamlined, with custom software that takes a design file, evaluates types of cages needed, then derives a build sequence, and goes straight into digital fabrication. Currently, Toggle, which is in the early stages of its technology, is using a “cooperative process”—a human and robot working side by side. The robot does the dangerous work and heavy lifting, picking up and manipulating the bars, while the human does just the final wire tying. Toggle is in the process of automating this step as well, aiming to increase productivity over all-human rebar processing by as much as five times while halving the cost. The two also plan on adding a linear track that would allow the robot to produce larger meshes, though currently, they are operating at a fairly substantial maximum of 20 feet. No mere experiment, the robot is currently being put to work, fabricating rebar for projects in New York City and the surrounding area. Part of the plan is to develop a system that works something like vertical farming, Cohen explained, where production happens close to where there is need, minimizing the logistical demands and long-distance transportation and “allowing civil infrastructure to be developed and constructed in the societies that need them most.” New York, of course, is a perfect testing ground with its constant construction. Currently, global labor shortages, including in the U.S., make infrastructure construction expensive according to Cohen. Toggle’s goal is to “reduce cost and accelerate construction projects around the world, all while maximizing safety.” The intent, Cohen says, is not about getting rid of human labor but about “taking work away from humans that is not suited for them and putting them in jobs that are better for humans.”
Placeholder Alt Text

The solar-powered FutureHAUS is coming to Times Square

New housing is coming to Times Square, at least temporarily. The Virginia Tech team of students and faculty behind the FutureHAUS, which won the Solar Decathlon Middle East 2018, a competition supported by the Dubai Electricity and Water Authority and U.S. Department of Energy, will bring a new iteration of its solar-powered home to New York for New York Design Week in collaboration with New York City–based architects DXA Studio. The first Dubai iteration was a 900-square-foot prefab home, that, in addition to being entirely solar powered, featured 67 “futuristic devices,” centered around a few core areas including, according to the team’s website: “entertainment, energy management, aging-in-place, and accessibility.” This included everything from gait recognition for unique user identities and taps that put out precise amounts of water given by voice control to tables with integrated displays and AV-outfitted adjustable rooms. One of the home’s biggest innovations, however, is its cartridge system, developed over the past 20 years by Virginia Tech professor Joe Wheeler. The home comprises a number of prefabricated blocks or "cartridges"—a series of program cartridges includes the kitchen and the living room, and a series of service cartridges contained wet mechanical space and a solar power system. The spine cartridge integrates all these various parts and provides the “central nervous system” to the high-tech house. These all form walls or central mechanical elements that then serve as the central structure the home is built around, sort of like high-tech LEGO blocks. The inspiration behind the cartridges came from the high-efficiency industrial manufacturing and assembly line techniques of the automotive and aerospace industries and leveraged the latest in digital fabrication, CNC routing, robotics, and 3D printing all managed and operated through BIM software. Once the cartridges have been fabricated, assembly is fast. In New York it will take just three days to be packed, shipped, and constructed, “a testament to how successful this system of fabrication and construction is,” said Jordan Rogove, a partner DXA Studio, who is helping realize the New York version of the home. The FutureHAUS team claims that this fast construction leads to a higher-quality final product and ends up reducing cost overall. The cartridge system also came in handy when building in New York with its notoriously complicated permitting process and limited space. “In Dubai an eight-ton crane was used to assemble the cartridges,” explained Rogove. “But to use a crane in Times Square requires a lengthy permit process and approval from the MTA directly below. Thankfully the cartridge system is so versatile that the team has devised a way to assemble without the crane and production it would've entailed.” There have obviously been some alterations to the FutureHAUS in New York. For example, while in Dubai there were screen walls and a courtyard with olive trees and yucca, the Times Square house will be totally open and easy to see, decorated with plants native to the area. The FutureHAUS will be up in Times Square for a week and a half during New York’s design week, May 10 through May 22.
Placeholder Alt Text

Robots and poetry come alive at Black Imagination conference

On a humid, gray morning at Princeton in a cubic glass pavilion in a robot arm–equipped garage, architect Mario Gooden sat on a stool silently while discordant sounds emanated from two televisions flanking him that played images, barely visible under the sun streaming in through the translucent walls. Us viewers sat on the benches wrapping the room. Gooden moved his stool and sat again. Finally, he began speaking. Reading from a black folder he talked about space-time, general relativity, and black holes, and about the Black Panthers, being age 13, being American, cinema’s star-crossed lovers, the “image-city,” being in the wake, or being the wake. So began the second day of Black Imagination Matters (BIM, so named to “scramble” the usual meaning of the acronym in architecture), a two day conference organized by V. Mitch McEwen, which was the culmination of a month of workshops this past March and April which included prototyping fictive technologies from W.E.B. Du Bois’s recently-discovered short story “The Princess Steel” as well as choreography workshops with drones. This past weekend's events showcased numerous architects, theorists, writers, and artists thinking about “architechnipoetics,” or the intersections between the ways we make our world in bricks and circuits and words and movement. “You’re composing images with your body,” Gooden incanted over syncopated, and at times, dissonant sounds. Eventually he fell back to silence, though the soundtrack continued. At the end of Gooden’s silence, McEwen asked for our own. The sky cleared. Then, a slightly more usual panel with Jenn Nkiru, beth coleman, and Jerome Haferd. coleman began by asking one of the most difficult questions of all: “What would it be to be free?” Many others joined in during the conversation. In response to discourse on the spiritual and celestial, author Sharifa Rhodes-Pitts, who presented later and then spoke in a panel alongside artist Mario Moore, offered that the many ways of telling and documenting time in various African traditions is something that, to some extent, can be known, and that the archive of such traditions, no matter how troubled, perhaps offers some grounding. The BIM Incubator was incredibly capacious for an event organized by an architecture school, bringing together poets, dancers, filmmakers, scholars, technologists, architects, and others who presented and celebrated inter- and antidisciplinary approaches to thinking about space, building, the future of the city, and the power of Blackness within it. Collaborative and open, BIM was modeled on Donna Haraway’s use of the notion of "sympoiesis," a process of collective making and knowledge production. Science fictions and science presents were blended throughout the event's discussions, most especially by Haferd, whose presentation on his projects in Harlem’s Marcus Garvey Park began with Ursula K. Le Guin; Samuel R. Delany, Octavia Butler, and Sun Ra all got namedropped throughout the day. Saturday’s events took place between Princeton’s Architecture Laboratory and the robot-outfitted Embodied Computation Lab. Rhythm; the water; terrestrial freedom; celestial freedom; the archive; the body; time; telling time; telling times; (im)permanence; the traps and powers, the uses and uselessness of representation; visibility and its transgression (what is secrecy and sacredness in an era of mass surveillance and documentation?, probed Nkiru); the meaning of “practice”; the problem of authenticity— these all were themes that were returned to throughout the day. The convening of so many people itself was a sort of architectural act, making a space through a day of ongoing interactions of speech, sound, images, and movement. And there was so much movement, especially for a university workshop, not only in Gooden’s multimedia performance but also in poet Douglas Kearney’s listening workshop during which he permitted participants to be as still or move as much as they felt to the music and sound he had created. Amina Blacksher next presented her double Dutch robots, two robot coordinated robot arms, that with the help of a human being, became semi-automated jump ropes. After Blacksher went first, people took turns trying to show off their skills. Despite their supposed “precision,” the robots have difficulty being as accurate, synchronized, and quick as young Black girls who jump rope, showing the incredible complexity of embodied and kinetic intelligence that is so often devalued and overlooked. Also working with robots, Lauren Vasey demonstrated the early stages of robots that used facial recognition to behave differently based on people's features, raising questions about the built-in algorithmic biases in new AI technologies. Then came an especially energetic three-person dance piece choreographed by Olivier Tarpaga titled WHEN BIRDS REFUSED TO FLY. All this motion suggested that perhaps architecture doesn’t stand, but rather, and more accurately, buildings balance. The day ended with sunset as Kyp Malone played his guitar and sang, accompanied by projections he’d designed.