Posts tagged with "Rainscreen":

Placeholder Alt Text

Stealthy Parisian development blends city life with garden courtyards

VIB Architecture has constructed a mixed-use program of student housing and a nursery along a narrow site in a busy neighborhood in Paris.

In a Parisian neighborhood known for its pedestrian-scale passages and small alleys, VIB Architecture has constructed a mixed-use project skillfully incorporating student housing and a nursery program into a complex of several new construction and renovated properties. The project is located in Belleville, a historically working class neighborhood with strong arts community and a heterogeneous mix of architectural scales arranged along a hilly topography. This latest addition to the neighborhood adds to the mix by combining contextual strategies with a bold contemporary material palette and massing scheme. The project is generally organized around two 8-story buildings that are bisected by an exterior passageway that leads to a courtyard space. Apartments are located along the active street front, protecting a rear sunny courtyard, lined with smaller scale buildings, for use by the nursery. An existing building links the two programs.
  • Facade Manufacturer Tolartois (panel fabrication); Francano (anodized finish)
  • Architects VIB Architecture (Franck Vialet and Bettina Ballus)
  • Facade Installer BECS (engineering consultants) / Lainé Delau (facade installation)
  • Facade Consultants Igrec Ingénierie (engineering)
  • Location Paris 20e
  • Date of Completion 2015
  • System rainscreen (perforated, stamped, arched, boards over a galvanized steel framing)
  • Products 2mm aluminum panels (Tolartois); bronze anodizing (Francano); marble granulate coated facades (Zolgranit); Lacquered aluminum frames with integrated acoustic ventilation slits (Kawneer), Laminated and coated flat glass & metal mesh (Jakob)
The most recognizable building is wrapped in a custom-designed perforated aluminum skin, with a massing composed of slightly staggered floor plates with rounded corners. The skin of the building becomes panelized into operable shutters at window locations, allowing for users to control desired levels of shading, privacy and ventilation. The horizontal patterning of the perforations tracks downward into the courtyard, aesthetically integrating the housing and nursery programs, says Franck Vialet, Partner of VIB Architecture. “The perforations give depth and the horizontal stripes vibrate and link the street to the inner gardens.” The building interestingly was originally designed with a wooden rainscreen system, but was dropped early in the design process due to strict fire regulations. Vialet says the resulting aluminum facade became a natural choice due to its material qualities and design flexibility with fabrication processes. “We looked for a skin that could be unique and could be textured or machined into both large scale and smaller pieces. Anodized aluminum was the ideal solution because of its great ability to reflect light and to be perforated easily.” Positioned next to an historic garden, the bronze anodized building acts as a landmark, providing a sense of depth to the urban fabric of Belleville. Immediately adjacent to this building sits a second which is designed to be compatible with existing context, clad in a white plastic coating, the massing of the building is more ubiquitous than the first, while strategically stepping down at the rear facade to gently meet the courtyard. By altering the tectonics of the two buildings, the overall impact of the scale of the project is reduced while reinforcing a central circulation “spine” through the length of the plot, linking two successive courtyards. Vialet says the most successful part of the project is the urbanism it fosters: “its ability to naturally blend into the city and to bring together people from the street, the park, and the courtyards.”
Placeholder Alt Text

A “New Blue House” in Germany brings together energy industry, science and public sector

"To make sure that all sustainability criteria are considered, we coordinate an integrated general planning team with clear communication structures and a customized working process from the first conception until the phase of use." - kadawittfeldarchitektur

Kadawittfeldarchitektur has built a modern energy efficiency center on the campus of Hochschule Niederrhein in Mönchengladbach, a city in North Rhine-Westphalia, Germany. The zero emission building is constructed to Passive House standards which require thermal bridge free design, superior windows, ventilation with heat recovery, quality insulation and airtight construction.  The driving idea behind the project was to unite the science and energy industry with the university in a collaborative effort to share innovative energy technologies with the public. The building accommodates an energy center for NEW, an energy and water utility company, along with an academic library, a startup center for new business ventures, and an energy laboratory for students. The building is designed to be an object in the landscape – a “solitaire” according to Mathias Garanin, Project Manager for kadawittfeldarchitektur.  “Due to its conception as a solitaire, it is a building without a rear elevation, a building that faces public space in all directions.” Garanin and the kadawittfeldarchitektur project team say the building volume was based on setback distances from neighboring buildings, creating a compact, five-sided volume clad with oppositely inclined blue tinted glass and photovoltaic panels coordinated with the orientation and incidence of solar radiation. “The NEW-Blauhaus building is kept at a distance in order to establish new relationships.” Benefits to the volumetric shape of the building include a favorable volume-to-surface ratio for energy efficiency and a relatively short interior travel distances to maximize collaboration.
  • Facade Manufacturer ertex solartechnik GmbH (photovoltaics), SUMMER facade systems (glazing)
  • Architects kadawittfeldarchitektur
  • Facade Installer SUMMER facade systems, A.Frauenrath BauConcept (general contractor)
  • Facade Consultants Rache Engineering GmbH (engineering)
  • Location Mönchengladbach, Germany
  • Date of Completion 2015
  • System curtain wall system on five-story reinforced concrete structure
  • Products black aluminum profiles; floor-to-ceiling sashes with exterior soundproofing, fall-protection panes; dark-blue enameled panes; photovoltaic elements integrated in opaque panes; exterior solar shading device
While the architects have produced a formally engaging homogeneous skin, loaded with performative features acknowledging insulation requirements, acoustics, durability, and user comfort, perhaps the most important role of the building is to clearly communicate a high performance energy agenda. This is achieved in two ways: in the facade, which is clad with photovoltaic panels, and at the base of the building, where an energy center doubles as a showroom visible to onlookers from the exterior. Here, visitors can engage in displays showcasing sustainable energy, along with a specialized highly efficient reversible heat pump system involving an ice storage tank and chiller plant. kadawittfeldarchitektur says the facade is the building’s most exclusive means of expression. “As a significant part of the advanced energy concept, it communicates the approach to conserving resources to the outside and determines the identity of the architecture and its users in the urban environment.” A 4-foot structural grid establishes stacks of window and photovoltaic units that are variably rotated to most effective solar angles. Soundproofing panes located in front of the widow units work to compositionally complete the building envelopes patterned ornamentation. The window units are operable, providing individualized user comfort as required. The north facade receives enameled glass in place of the photovoltaic panels along the north facade were omitted from the design due to performative issues, and replaced with an enameled glass. The elegance of the envelope system inspired an interior design scheme of clarity and communication through “color blocking.” Based on the activity of the building as an energy generation system from dusk to dawn, the coloration of interior spaces combines hues of a defined color spectrum found in sunset and sunrise conditions.
Placeholder Alt Text

Machado Silvetti's modern addition to historically significant Ringling Estate

The new pavilion features 2750 individual terra cotta modules, weighing in at 60-70 pounds each.

The John and Mable Ringling Museum of Art, part of a historic 66-acre estate in Sarasota, Florida has received a striking new pavilion designed by Machado Silvetti to house new gallery and multi-purpose lecture space. Officially called the Center for Asian Art in the Dr. Helga Wall-Apelt Gallery of Asian Art, the project features a custom glazed sculptural terra cotta clad volume elevated off the ground, and attached to the museum’s West Wing galleries via glass bridge. The new 7500 sq. ft. pavilion establishes a new monumental entrance to the museum, and assists in the reorganization of site circulation and infrastructure systems. Teaming with Boston Valley Terra Cotta, the architects developed a cladding strategy to respond to specific environmental, programmatic, and budgetary criteria. The project is inspired by lush foliage and historic architectural ornamentation found within the Ringling estate. Craig Mutter, Principal at Machado Silvetti, says the gallery-based program of the new addition led the project team to considering a conventionally constructed box with very few windows, to reduce glare: “We put our design energies into creating a high performance building envelope.” Machado Silvetti teamed with Boston Valley Terra Cotta, an upstate New York-based architectural terra cotta manufacturer. “We were involved very early in the process," says Bill Pottle, Boston Valley International Sales Manager. "We went from hand sketches to a 3D digital format where we were able to go back and forth with the architect and talk about different sizes. This helped us rationalize and execute the project to fit into both manufacturing and budget parameters." The tiling of the facade was achieved with three primary shapes optimized to the rack size of the kilns utilized in the production of the modules – a 24” square, a 24” portal framing a window opening, and an 18” square. All together, with custom pieces at corners and end conditions, no more than 10 unique shapes were required. The repetitions allowed for efficiencies in the production process, which paired digital modeling and fabrication with hand craft. The modules were made one at a time, weighing between 60-70 pounds apiece. In total, 2750 three-dimensionally shaped ceramic modules were installed on the building. This manufacturing method became a significant constraint on the architectural design, said James Smokowski, Project Manager at Boston Valley. "The size limitation of the RAM drove a number of design changes from the architect.” Initially calling for a 60" x 60" tiled piece, the architects revamped their design to fit within the dimensional constraint of the kiln equipment. Rhino3D models were prototyped into shells using a 5-axis mill, which became the formwork for a hydraulically operated RAM press.
  • Facade Manufacturer Boston Valley Terra Cotta
  • Architects Machado Silvetti
  • Facade Installer Key Glass (windows), Sun Tile (terra cotta)
  • Facade Consultants Boston Valley Terra Cotta, Stirling and Wilbur Engineering Group (structural engineering)
  • Location Sarasota, FL
  • Date of Completion 2016
  • System custom terra cotta rainscreen on concrete frame with concrete block infill
  • Products custom terra cotta modules attached to modified Terraclad track from Boston Valley, YKK glass units
A sense of depth was established both by the chiseled three-dimensional form of the ceramic modules and a custom green glaze developed by Boston Valley. Due to the geometry of the modules, the glaze pools in the concavities creating a coating with variable depth. The terra cotta modules were installed on a modified version of Boston Valley’s standard Terraclad stainless steel track and clip system over a standard wall construction of concrete framework infilled with concrete block units. This detailing allowed for cost savings and assisted in the pre-qualification of terra cotta installers. Adjustments to the stock rainscreen system were made to create a consistent 3/8” gap around the full perimeter of each modules, ensuring individual pieces are able to be removed and replaced in the event of any damage. Windows were used sparingly on the facade, composed into clusters where interior program can accommodate some glare. These “clouds” of windows occur in the third floor meeting room along the north facade, and are distributed throughout the facade with careful attention to reducing glare within the gallery space. Despite having significant views to the picturesque Sarasota Bay, windows are used sparingly as accents – tiny portals which nearly disappear into the tiling of the facade. Rodolfo Machado, Principal at Machado Silvetti, says this compositional decision was deliberate: "Perhaps the most effective windows are in the third floor conference room. Here, small windows carefully framing the landscape are quite effective – almost like looking at a painting. In this case, fewer smaller windows work better." Through this modern addition to the Ringling Museum campus, the architects were able to solve programmatic day to day operational issues at The Ringling, which was a big win says Craig Mutter, Principal at Machado Silvetti: “We are particularly proud of this project because our mission was to create a striking addition to this area of the museum that would be a beacon to the visitors on the campus. But we were also able to solve day to day problems the museum was facing, from way finding to operations, to conservation lab connections. We feel this project will have a very big long term impact for the Museum."
Placeholder Alt Text

Tessellated BIM cloud wraps new engineering school

An undulating aluminum panels rainscreen features around 9000 individual triangular panels, with 1000 high performance glass units.

York University is a research-oriented public university in Toronto known for its arts, humanities & business programs. Nestled into the landscape on the edge of campus and overlooking a pond and arboretum, the Bergeron Center for Engineering Excellence is a 169,000 sq. ft., five-story LEED Gold facility housing classrooms, laboratory spaces, offices, and flexible informal learning and social spaces. Designed with the idea of a scaleless, dynamically changing cloud in mind, ZAS Architects + Interiors designed an ovoid-shaped building wrapped in a custom triangulated aluminum composite panel (ACP) cladding with structural silicone glazed (SSG) type windows. Costas Catsaros, Associate at ZAS, says the building will help to establish the emerging school by establishing a dynamic, ever-changing identity. There are two main generators of the Bergeron Centre’s cloud geometry: the building floor plate shape, and various forces manipulating the topology of the cladding surface. The floor plan is designed around 8 curves: a primary curve establishing north, south, east, and west orientations, along with a radius at each corner. Center points of the radii provide reference points for additional sets of geometry and field surveying benchmarks during the construction phase. The resulting ovoid-shaped floor plate, challenged the architects with developing an effective way to wrap the building. They focused on the work of Sir Roger Penrose, a mathematical physicist, mathematician and philosopher of science, whose tessellation patterns inspired an efficient way to generate repetitive patterns using a limited number of shapes. Through an intensive design process, the architects were able to clad 85% of the building using only three triangular shapes, scaled based on industry standard limitations for ACP panel sizes. The other panels were cropped by undulating edge geometry along the soffit and parapet edge curves of the surface. To achieve a dynamic effect, the panels inflect at up to 2” in depth, creating an individualized normal vector per panel. By canting the triangulated panels, subtle variation in color and reflectivity is achieved. Additionally, the architects scattered color-changing dichroic paneling throughout a field of reflective anodized panels, while dark colored panels casually cluster around window openings to blur the perceptual edge between solid and void.  
  • Facade Manufacturer Flynn (building envelope system), Norwex Steel (steel fabricator)
  • Architects ZAS Architects + Interiors
  • Facade Installer Laing O’Rourke (contractor)
  • Facade Consultants Flynn (building envelope), Blackwell (structural engineering)
  • Location Toronto, Canada
  • Date of Completion 2015
  • System Curtain wall and custom rainscreen assembly clipped to cast-in-place concrete structure
  • Products Aluminum composite panels with dark gray, light gray, and dichroic finishes; Structural silicone glazed (SSG) windows by APA Systems (Ireland)
The building substrate framing is designed with the complex geometry of the rainscreen system in mind. A modular pre-framed structural unit was developed through a highly coordinated BIM information exchange process which resulted in custom support collar detailing at window openings, a unique two-piece girt system to provide concealed attachment for the ACP panels, and a method to allow for up to 1” of tolerance within the wall assembly through reveal gaps in the cladding. During this process, a design model was passed along from the architects to the structural engineer, who developed a construction model in a 3D CAD Design Software. This model was utilized to generate shop drawings, and shared with the steel fabricator, who shared the model with Flynn, a building envelope consultant, to coordinate the rainscreen panelization with respect to window openings in the building envelope. Catsaros says this was a very successful leverage of BIM technology: "It was a very intense process, but worth it in the end. Laing O’Rourke [general contractor] was able to close in the building a lot faster than if this had been done in a conventional process." Closing in the building early in the construction process was critical on this job, which required an opening date in time for the beginning of the school year in September. This required a peak in construction activity during the middle of winter, which would have presented difficulty on an open job site. The off site production and rapid assembly of the building envelope established a warm dry environment for the installation of sophisticated (and costly) laboratory equipment and building systems, none of which would have been possible with the threat of cold weather and moisture an open building invites.
Placeholder Alt Text

Synthesis Design + Architecture's sophisticated addition to one of the world's largest malls

The facade and roof serve as a the graphic identity for the 20,000 sq. ft. building while acting as a veil which reveals and conceals views.

The Groove provides an extension to CentralWorld, the third largest mall in the world. At 6,000,000 sq. ft., the mall is comprised of three towers: an office tower, a lifestyle tower (including a gym, dentist and doctors offices, schools, etc.), and a hotel tower. The main shopping center includes four department stores and a convention center. Sited at an existing entry plaza to the office tower, which feeds an underground parking garage, the project came to Synthesis’ office with several structural design constraints. The weight of the addition was limited, causing the design team to incorporate a specific steel frame with a grid coordinated to the bay spacing of the parking garage immediately below grade. Alvin Huang, Founder and Design Principal of Synthesis Design, says this helped save time at the start of the design process. At 20,000 sq. ft., the project, jokes Huang, is “the punctuation on the paragraph.” The design team approached the project with a concept aimed at providing an intermediary space – an “intimate atmosphere” – within Bangkok’s predominant shopping district. Their strategy was to depart from a traditional single monolithic building (more of the same), developing instead an indoor/outdoor atrium space to link a series of buildings inspired by the Bangkok "soi" (Thai for side-streets) for their comfortable café-like pedestrian atmosphere.
  • Facade Manufacturer Reynobond
  • Architects Synthesis Design + Architecture; A49 Architects (Thailand); Foundry of Space (Thailand)
  • Facade Installer Qbic Engineers & Architects Co.,Ltd., KYS Company Limited
  • Facade Consultants Doctor Kulsiri Chandrangsu - Ferrand (structural engineer)
  • Location Bangkok, Thailand
  • Date of Completion 2013
  • System custom rainscreen with integrated lighting
  • Products CNC-milled aluminum composite panels & timber soffits, LED backlighting system
The building envelope of the Groove peels open to organically reveal openings rather than incorporating typical punched openings. An aluminum composite panel rainscreen system incorporates gradient patterning and integrated lighting to produce an exterior that is “intense, active, and slick” according to Huang. “The skin replicates the intensity of a specular effect of continually pulsating lights along Ponchet Road.” A warm interior spills out to the exterior via CNC-milled timber soffits, whose geometry peels outward, overlapping openings as a sort of exaggerated detailing found in an airplane window trim. The rainscreen panels were CNC milled by a local fabricator who utilized geometry from Huang’s office to produce a custom perforation pattern. “We didn’t want the architecture and the identity to be two different things,” says Huang. “The signage appears and disappears – a gradient that pulses and draws your eye toward openings.” Huang says as an office, Synthesis is generally interested in the relationship between the digital and the hand made. “We are highly digital in our design process. but in Thailand, most construction components are hand made and ultimately assembled by a labor force of limited experience, requiring simplification, not complexity.” Synthesis’ design office focuses on "digital craft" with a body of work that is driven by the relationship between fabrication and the act of making as part of the design process, says Huang. “What we are not interested in is designing, and then figuring out how you are going to make it.” The Groove is one of 37 projects currently nominated for "Building of the Year 2015," a poll open to the public through the end of January, 2016.
Placeholder Alt Text

Colorful “little mountains” highlight Eastern Europe's first children’s museum and science center

The 35,000 sq. ft. building celebrates three artisanal crafts significant in Bulgaria: textiles, wood carving, and glazed ceramics.

Lee H. Skolnick Architecture and Design Partnership has designed a new children’s museum called "Muzeiko" in Bulgaria’s capital city of Sofia to balance complex form, regional relevance, and whimsical fun. Their client, the America for Bulgaria Foundation, wanted international expertise paired with state of the art materials. The architects responded to the geography of the Sofia Valley, a region surrounded by mountain ranges, with abstracted forms referring to the nearby Balkan mountains, triangulated in a "scientific" manner. This thematic element, coined “Little Mountains” by the architect, is composed of a rainscreen assembly consisting of high pressure laminate (HPL) panels with printed graphics clipped onto a wall system framed by a combination of a primary steel framework, and a fiber reinforced concrete shell. The panels are differentiated with color and patterns unique to traditional artisanal Bulgarian crafts. Textiles and embroidery, wood carving, and glazed ceramics were studied by the architects, and reduced into three color-saturated patterns which were ultimately applied to three forms. Another feature of the building is a “super insulated” curtain wall assembly of triple glazed low-e glass, custom built locally by TAL Engineering. The glass panels were some of the largest available in the region at the time, sized at 7’-4” x 10’-10.” A custom ceramic frit pattern, developed by the architects, creates a “cloud-like” effect while establishing view control and addressing solar gain concerns on the south facade. The curtain wall extends beyond the roof to form a parapet guard at the roof deck, where the frit pattern dissolves enough to catch a glimpse of the sky beyond the facade from ground level. Also notable is a custom gray coloration on the mullions, which is the result of numerous mockups studying the least visually distracting color to the overall system.
  • Facade Manufacturer TAL Engineering (building envelope)
  • Architects Lee H. Skolnick Architecture + Design Partnership; A&A Architects (Associate Architect)
  • Facade Installer Bigla III Ltd. (contractor, constr. manager)
  • Facade Consultants TAL Engineering (building envelope)
  • Location Sofia, Bulgaria
  • Date of Completion 2015
  • System rainscreen on steel frame, high performance curtainwall, green roof
  • Products high pressure laminate (HPL) panels with printed media, triple insulated low-e glazing panels with applied ceramic frit
Beyond the curtain wall assembly, notable sustainable features include solar panel array on the south wing, recycled grey water for irrigation, and interpretive sustainable features on display throughout the interior of the building. A key precedent for the project is the University of Mexico City, says Lee Skolnick, FAIA, Principal of LHSA+DP, which has an “incredible facade of mosaic tile.” Skolnick says the project was an attempt at the time to marry modern architecture with cultural significance. "It’s a concept that has been used rarely throughout recent architecture history. 'Interpretive content' on the face of the building is coming back, but it is not universal. We much more often see patterning that is geometric or structural — a geometric blanket that wraps a form. We are looking for something that is more highly specific than that.” At key moments along the building envelope, the colorful “little mountain” forms visually penetrate beyond the curtain wall system into the interior, establishing specialized programmatic spaces such as a gift shop, cafe, eating area, restrooms, and multipurpose workshops. One challenge the design team faced was developing a patterning for the rainscreen panels. They began by considering a variety of materials and fabrication methods available, from ceramic materials, to fabrics, to etched metal panels. Ultimately the architects chose a high pressure laminate (HPL) material for maintenance, manufacturing quality and consistency, detailing control, and lifespan of material. Through a process of "continual sampling, processing, and refining," the architects arrived at a set of patterns which boldy abstract the colors, patterns, and textures of Bulgarian artistry.