Posts tagged with "3D Printed Architecture":

NatureStructure exhibition

On May 17, 2018, BSA Space will premier NatureStructure, a global overview showcasing more than 30 architectural and design projects that work in harmony with nature to heal and restore ecosystems and make cities more resilient and sustainable. Curated by Scott Burnham, the creator of Reprogramming the City, with exhibition design and curatorial assistance by Samantha Altieri, NatureStructure will feature a vast array of international projects that weave built projects with nature and natural functions to enable cities and regions to function as living systems. The works on display include the US premiere of the Delfland Sand Motor, a feat of engineering that uses coastal tides to distribute sand along the coast of the Netherlands to reverse erosion and protect against sea level rise; Pop-Up, a revolutionary parking garage by Denmark’s Third Nature that rises in the city scape as its base absorbs rainwater overflow; and 3D printed reefs and seawalls by Australia’s Reef Design Lab to repopulate Sydney Harbor sea life and counter the depletion of reefs in the world’s oceans.
Placeholder Alt Text

Cutting-edge 3-D-printing pushes construction boundaries in an Oakland cabin

The 3-D-printed Cabin of Curiosities is a research endeavor and "proof of concept" investigation into the architectural possibilities of upcycling and custom 3-D-printed claddings as a response to 21st-century housing needs. This exploratory project is an output of Bay Area-based additive manufacturing startup Emerging Objects, founded by Ronald Rael and Virginia San Fratello, who are professors at the University of California Berkeley and San Jose State University, respectively. They also co-founded the architecture studio Rael San Fratello, whose work primarily focuses on architecture as a cultural endeavor. The Cabin of Curiosities is exemplary of Emerging Objects’ work, which dives deep into the material science of additive manufacturing while utilizing open-source tools and standard off-the-shelf printers. Due to a housing emergency in the Bay Area, the Oakland City Council eased restrictions on the construction of secondary housing units, or backyard cottages. The new rules promote more rental housing by easing parking requirements, allowing homeowners to transform existing backyard buildings like sheds and garages into living spaces, and relaxing height and setback requirements. Thusly located in a residential backyard, the one-room gabled structure brings together a collection of performative tile products, from interior translucent glowing wall assemblies to exterior rain screens composed of integrated succulent planters and textural "shingles" that push the boundaries of how quickly one can mass produce 3-D-printed architectural components. Over 4,500 3-D-printed ceramic tiles clad the exterior of the building. The firm is committed to focusing on upcycling agricultural and industrial waste products, and at times its custom materials sound more like tasting notes from a nearby Napa or Sonoma wine. Grape skins, salt, cement, and sawdust, among others, have been integrated into Emerging Objects’ products to create variety among the tiles. The project integrates two types of tiles on the exterior: a "planter" tile on the gable ends, and a shingled "seed stitch" tile wrapping the side walls and roof. The planter tiles offer 3-D-printed ceramic shapes that include pockets for vegetation to grow. The seed stitch tiles, borrowing from knitting terminology, are produced through a deliberately rapid printing process that utilizes G-code processing to control each line of clay for a more "handmade" aesthetic. No two tiles are the same, offering unique shadow lines across the facade. The cabin interior features translucent white Chroma Curl wall tiles, made of a bio-based plastic derived from corn. These tiles offer a customized relief texture inspired by the tradition of pressed metal ceilings, which historically relied on mass production through mold-making. It might be too soon to tell, but the 3-D-Printed Cabin might be our generation’s version of Muuratsalo, Alvar Aalto’s classic house circa 1953 experimenting with textured material and architectural form through its construction. "We're building this from our kitchen table, printing parts and testing solutions in real time," said San Fratello. The cabin is a departure from other investigations in 3-D-printed dwellings, many of which are unlivable and not aesthetically considered. “These are not just investigations into testing materials for longevity or for structure, but also a study of aesthetics. We see the future as being elegant, optimistic, and beautiful,” said Rael.
Placeholder Alt Text

New 3D printing software churns out giant projects in one pass

Fabricators watch as an artificial hip joint comes together on the tray of a 3D printer.  This, doctors say, is the high-tech future of joint replacement. The printer's lone nozzle squirts plastic polymer out into the precise shape. However, in the time it takes to make a new joint, you could watch half a season of The Bachelor, or drive from New York City to eat poutine in Montreal. One company is addressing the time barrier with a new software that enables faster, and much bigger, 3D printing. https://vimeo.com/157523884 Autodesk is creating a 3D printing system, dubbed Project Escher, will be able to create large objects in one pass. Project Escher divides larger designs into smaller instructional packages. The packages are sent to groups of printheads which work in tandem to produce the finished object. This factory-line approach speeds up the often painstakingly slow printing process for large, high-resolution pieces. The customization goes further: Project Escher's printheads are modular, making it easy to swap out different tools. For example, you could swap a printhead with a tool that removes supporting structures while the other five printheads churn out a product. This video shows just how this would happen. Printing large objects could have positive ramifications for architects: facades like this one could be fabricated in one session. Ornate wall-to-wall moldings or whole ceilings could be reproduced without interruption. Currently, larger-scale 3D printing is currently employed by archeologists replicating ancient buildings destroyed by ISIS in the Syrian city of Palmyra. To be clear, Autodesk is not building a new printer, just the software. The printer-savvy can build their own machines to accomodate the software, mere amateurs will have to wait for the hardware to catch up.
Placeholder Alt Text

The always-superlative Dubai is set to build the world’s first fully functional 3D-printed office building

What do office buildings and onions have in common? Layers! Dubai is gearing up to 3D-print an entire office building to temporarily house staff of the Museum of the Future. The high-tech structure takes the shape of an elliptical-shaped spectacle engraved with Arabic letters set to open in 2017. Its breathless marketing vaunts the fact that all interior fixtures and furniture will also be 3D-printed. The building will go up layer by layer in “a process much like a baker might ice a cake,” 3D printing company WinSun Global claims on its website. The Shanghai-based firm, a joint venture between Chinese 3D printing technology company WinSun and international investors, is partnering with Dubai to fabricate the 2,000-square-foot building within a number of weeks. While 3D printers have thus far been used to manufacture exterior walls or frames for homes, the technological museum claims that its sci-fi reminiscent, short-term headquarters will be the world’s first fully functioning, 3D-printed building and the most advanced 3D-printed structure ever built. Its exterior will be made of cement and printed concrete treated with special hardeners to ensure each layer can support the next. Reinforced plastic and glass fiber reinforced gypsum will also be used in construction. "This building will be a testimony to the efficiency and creativity of 3D printing technology, which we believe will play a major role in reshaping construction and design sectors," said Mohammed Al Gergawi , UAE Minister Of Cabinet Affairs and The Chairman of UAE National Innovation Committee. "We aim to take advantage of this growth by becoming a global hub for innovation and 3D printing. This is the first step of many more to come." Experts estimate that courtesy of the advanced technology, construction time can be shaved by 50–70 percent, labor costs by 50–80 percent, and construction waste minimized by 30–60 percent. The project is the Museum of the Future’s first major initiative before it opens in 2017. While there is scant information on the office’s interior design, museum authorities maintain that it represents “the latest thinking in workplace design” based on “in-depth research about the requirements of future work.”
Placeholder Alt Text

Researchers Train Robots to 3D Print Architecture

The future of architecture is upon us, and thanks to a team of researchers led by Sasa Jokic and Petr Novikov, construction workers may soon be made obsolete. A team from the Institute for Advanced Architecture Catalonia (IAAC) is currently tackling the challenge of making “mini-builders”: drones that are capable of applying 3-D printing at a large, architectural scale. While the minibuilder robots are original inventions, the idea of using robots to 3-D print architecture is not a new one, and many, including a team from Gensler Los Angeles, are exploring the usefulness of the technology. The idea dates back to 2008 when Caterpillar began funding Behrokh Khoshnevis of the University of Southern California. These mini-builders are unique because of their relatively tiny size, which makes them easier to mass produce and much more convenient to haul places. Currently there are three robots that have been unveiled to the public by the IAAC team: the foundation robot, the grip robot, and the vacuum robot. The foundation robot is equipped with tracks and a sensor to keep it in position and lays down the base of the structure for the other two robots to work on. Next, the grip robot actually attaches itself to the structure via rollers and is responsible for raising the printed structure vertically. Finally the vacuum robot utilizes suction cups to cling onto the surface of the structure and reinforces the walls. The robots are currently working with concrete as a building material.
Placeholder Alt Text

Shanghai Company 3-D Prints Village of Humble Concrete Homes

A Shanghai building company has erected a small village of pitched-roof, 3-D printed structures—in about a day. WinSun Decoration Design Engineering Co is behind the series of humble buildings, a fully fabricated unit is expected to cost less than $5,000. The homes were created through the use of a 490- by 33- by 20-foot 3-D printer that fabricates the basic components required for assembly. Rather than plastic, the machine behind these structures spits out layer upon layer of concrete made in part from recycled construction waste, industrial waste, and tailings. WinSun intends to construct 100 factories that will harness such waste in order to generate their affordable "ink," which is also reinforced with glass fibers. Purists will note that the WinSun productions are not 3-D printed structures in the traditional sense. Rather than projects like these, or the contour crafting processes championed by USC Professor Berokh Khoshnev, the Shanghai homes are not printed on site layer by layer. Instead they are composites of 3-D printed parts that require human intervention in order to be assembled into something resembling a house. WinSun estimates that their methods can cut construction costs in half and sees the potential for "affordable and dignified housing" for the impoverished.
Placeholder Alt Text

Web-Based 3D Printing Hubs Make Everyone a Designer

The rise of 3D printing, the design and creation of objects using a material printer, is currently hindered by accessibility. Few own personal printers or know where to go to use one. However, according to Lara Piras of PSFK, commercially viable 3D printing is now a possibility with Netherlands-based 3D Hubs. The online company allows at-home designers to connect with locals who own 3D printers, arrange for payment for the printing of their creations, and then receive their material products, ideally without leaving their community. Co-founders Bram de Zwart and Brian Garret envision their system as a reinstatement of local production, a reaction to current globalization, which they believe paints laborers as “faceless links in a complex and obscure global process.” Their 3D printing hubs allow citizens to design products and then see their production, means and end, face-to-face. After uploading designs to the 3D Hubs website, at-home designers can search for 3D printer owners in their area, arrange for payment to print their designs, and then pick up the finished product a bike ride or short walk away.
Placeholder Alt Text

3-D Printing Goes Big: Architect Proposes A Möbius-Strip House

It's been over three decades since the 3-D printer was invented, and to be sure, the technology has come a long way. Now, Dutch architect Janjaap Ruijssenaars is putting the technology to the ultimate test by proposing to print an enormous Möbius strip house with over 10,700 square foot of house. The Landscape House, as Ruijssenaars named it, will be a two-story structure replicating the natural form of a figure eight by using “one surface folded in an endless Möbius band” he says on his website, intending for the building to effortlessly fit into the natural world. To complete the project Ruijssenaars will call upon designer Rinus Rowlofs and Enrico Dini, the inventor behind the D-Shape, a 3-D printer that will be used to print the Landscape House. It will be printed out in layers from bottom to top in roughly 20 by 30 feet sections. Each thin layer will be comprised of sand and a bonding agent to hold everything together. When the building is fully printed the loose sand will be dusted off to expose a marble-like finish on the final structure. Fiberglass and concrete reinforcements will be added to ensure durability, as 3-D printing on this scale has never been attempted. The team hopes the building will be complete by the end of 2014 with a budget between $5 and $6 million. [Via C-Net.] Check out how Dini created the D-Shape printer in the video below.