Posts tagged with "Virginia Tech":

Placeholder Alt Text

Ephemeral Field House by design/buildLAB

Virginia Tech students demonstrate a light touch with glass and steel pavilion.

The undergraduate architecture students enrolled in Virginia Tech's design/buildLAB begin each academic year with an ambitious goal: to bring a community service project from concept through completion by the end of the spring semester. In addition to the usual budget and time constraints, the 15 students taking part in the course during the 2013-2014 school year faced an additional challenge. Their project, a public pavilion for Clifton Forge Little League in the tiny hamlet of Sharon, Virginia, was entirely lacking in contextual cues. "It was interesting because our previous design-build projects have been downtown, with lots of context," said Keith Zawistowski, who co-founded and co-directs design/buildLAB with his wife, Marie. "Instead, we had a pristine, grassy field with a view of the mountains. We joke that this is our first group of minimalists." The students' understated solution—three geometric volumes unified by the consistent use of a vertical sunscreen—turns the focus back to the pavilion's surroundings with a restrained material palette of concrete, glass, and steel. Design/buildLAB assigned a separate structure to each element of the Sharon Fieldhouse program, nestling the open-air public pavilion between glass boxes containing the restrooms and concessions kitchen. Different roof heights distinguish the spaces, yet a common material vocabulary and their arrangement along a single horizontal axis allows them to be read as a single object. "The students describe the field house as a linear incision through the site," said Zawistowski. "Basically it's just light cut through the green landscape." Because Sharon Fieldhouse is intended for seasonal use, the students focused on maximizing environmental performance for the warmer months of the year. "Everything's about cooling and ventilation," said Zawistowski. A no-energy ceiling fan cools the kitchen, and tempered laminated white glass helps cut solar gain inside the enclosed areas. "The glass has a translucent quality, so that the spaces are bathed in even light, eliminating the need for electrical lights during the day," explained Zawistowski.
  • Facade Manufacturer design/buildLAB
  • Architects design/buildLAB
  • Facade Installer design/buildLAB
  • Location Sharon, VA
  • Date of Completion 2014
  • System laminated glass wind screens with custom-built steel sunshade
  • Products BMG Metals structural steel, white laminated glass from AGC Glass
The external sunshade, comprising vertical steel plate elements painted white, serves both conceptual and practical ends. "The shade screen is about intimacy and privacy—not just under the open-air pavilion but in the enclosed spaces," said Zawistowski. "The elements vary in density. They're tighter together toward the more private parts of the building." At the same time, larger gaps between the screen's members on the east side of the pavilion welcome in the morning sun, while to the west the steel bars draw together to provide afternoon shade. The screen simultaneously functions as skin and structure. "In most cases, the sunshade is tacked on. In this case it's part and parcel of the architecture," observed Zawistowski. Wider steel bars take the weight of the building's roof, and help conceal downspouts. "Everything is hidden there in the screen," said Zawistowski. "We brought a new group of students to the field house and asked them if they could figure out how rainwater could get off the roof. They didn't know." The students prefabricated portions of the pavilion at Virginia Tech's Blacksburg campus, panelizing the screen members and roofing. "One thing that bothers us in design-build education is that multiple generations tend to work on one project," said Zawistowski. "It's important for us that the same group sees the implications of what they design, so we rely really heavily on prefabrication." On campus, he added, students are able to take full advantage of the university's resources. Once on site in Sharon, the students completed assembly in just a couple of weeks. Given the fact that his students conceived of, fundraised for, programmed, planned, designed, and built Sharon Fieldhouse in less than ten months, it's no surprise that Zawistowski refers to the supernatural when he talks about the project. But when he brings up hocus-pocus, it is as much about the pavilion's aesthetic impression as it is about the speed with which it was brought into being. "We say that it's put together with magic," he mused. "All the connections are hidden—everything's just light and shadow."
Placeholder Alt Text

SOM and Virginia Tech’s Hanging Garden Automatically Responds to Weather

Fabrikator Brought to you by:
Hanging Garden

A motorized green wall that reads the weather and adjusts automatically

Two years ago six students and three faculty from Virginia Tech's School of Architecture + Design spent three weeks at SOM's Chicago office applying industrial fabrication solutions to the problem of high density housing for Southworks, a housing development that's currently being planned for a large vacant section south of the city. The result was LumenHAUS, an aggressively energy efficient home that won the international Solar Decathlon Competition that June for sustainable solutions to high density construction. LumenHAUS is not only net zero, it actually creates more energy than it uses by implementing, among other innovations, a modular system that autonomously responds to external weather information and internal environmental conditions to optimize energy use. This Fall Virginia Tech's Center for Design Research will begin construction on a full scale prototype of six housing modules, including a working prototype of Hanging Garden, a dynamic plant wall that reads the weather and responds by sliding along the walls and windows to either block or allow sunlight into the living unit.  Hanging Garden combines automated shading control with the emerging demand for urban garden space. Each unit is composed of a series of planters and and can be configured into one of three scenarios: (1) fully nested against the side walls of the south facing projecting balcony, (2) partially deployed to protect the balcony from east or west light or wind or (3) fully deployed and aligned with the outer face of the balcony (rotated 90 degrees). Each unit can automatically adjust to accommodate changing weather patterns, plant type and user demands by means of an actuated track system provided by Hafele. Two ceiling mounted tracks run parallel to each other until the garden reaches the outer balcony.  At this point the slave trolley follows the radial track and sends the garden plane horizontally along the outer edge of the balcony. "The plant wall system is integrated into our ‘responsive architecture’ smart home building control system, which was developed for the LumenHAUS," said Virginia Tech faculty member Joe Wheeler. "With real time data from both the house-mounted weather station and from interior environment sensors, the computer can detect when shading is needed or when direct solar gain is needed. For example, on a summer day when the system is in cooling mode, exterior temperatures are high and the daylight sensors detect full sun, plant walls are deployed into the full shade position along electronically controlled motorized tracks." Hanging Garden The Hanging Garden system can be built into a larger outdoor garden patio configuration that allots two outdoor spaces on either end of the main living module. During warmer months the patio can be opened up completely, providing cross ventilation. In colder months they can be closed to act like greenhouses and serve as insulating buffers to the indoor space, becoming passive mechanisms of energy efficiency. Even those whose thumbs are anything but green can easily keep their Hanging Garden growing year-round, thanks to the self-watering system - also a great feature for when you're out of town. "When the plant walls are in their "home" position, a reservoir is refilled by a ceiling mounted valve," Wheeler explained. "The reservoir directs water to each individual pot on the wall and a floor drain in the balcony collects any overflow." The final product will have a CNC cut steel frame and slip cast ceramic pots, but the prototypes for the six modular units will be made from MDF, an odd choice for such an environmentally progressive project, though perhaps the longterm benefits of Hanging Garden, and of the Southworks complex in general will ultimately outweigh a few preliminary MDF models?   Hanging Garden Hanging Garden Balcony-Diagram
Placeholder Alt Text

A Shiny New Neighbor for the Farnsworth House

Virginia Tech's Solar Decathlon-winning Lumenhaus is currently cooling its heals in the opulent surroundings of Millennium Park. The house, which has been touring the globe, was brought to town to coincide with GreenBuild, and is remaining on view through Saturday. The compact house is efficiently designed both in terms of space and energy use, and is completely self-sustaining. Though its stay in Millennium Park will be brief, it's not going far. The house will be stored on the grounds of the Farnsworth House for the winter and will be open to the public when it reopens for the spring season in April 2011. Whitney French, executive director of the Farnsworth House, sees a deep connection between the two structures.  "The design is deduced from the ideas of Farnsworth. It's organized around a utility core with broad views out to the landscape," French said. She also points out that Mies' design take advantages of natural cross ventilation and seasonal changes in sun and shade. And while Farnsworth was revolutionary in its day--and is still considered one of the world's great houses--Lumenhaus is decidedly more high-tech, with the latest in sustainable bells and whistles. It also uses more passive techniques, including rainwater retention ponds and passive heating. The interior is bright and open, a model of efficient, contemporary living. The Lumenhaus won't have to compete directly with the Farnsworth in terms of aesthetics, though. It will be situated near the visitors center, some distance from Mies' materpiece. The Lumenhaus is expected to remain at the Farnsworth site until June, 2011.
Placeholder Alt Text

lumenHAUS on Broadway

If you can't make it to the Hafele showroom tonight for the presentation on lumenHAUS—Virginia Tech's entry to the 2009 DOE Solar Decathlon—don't worry about it. AN was in Times Square last night to get the inside skinny on the solar-powered wonder house. In a quest to reconcile contemporary goals of sustainability with modern architecture, the VT team went beyond solar arrays. They began by studying the Farnsworth House and looking for ways to increase its insulation while maintaining its connection to its surroundings. That inquiry led to the design of a steel-framed glass box outfitted with two layers of sliding panels. The inner panel is made up of two layers of polyethylene filled with expanded silica gel—a highly insulating material that is lighter than air and translucent. The outer panel is a stainless steel sun and severe weather screen outfitted with perforations to allow some light through. Together with the glass wall these layers deliver an awesome insulation value of R24. LumenHAUS is outfitted with sensors that will adjust the panels to optimize energy usage in the house. At any time, of course, residents can override the system not only from a central control panel and manual switches, but also remotely through an iphone application. The house opens to two decks, one on the north and one on the south, increasing the potential living area during clement weather. Inside, the tiny 600-square-foot layout was planned with space conservation in mind. Various items of furniture move and transform to serve a variety of functions: A high shelf pulls away to reveal the kitchen counter while itself becoming a side table for the dining area. The bedroom's closets slide aside to reveal the TV and close off that portion of the home for privacy. The lumenHAUS is intended to be a prefabricated living system and modular, so that you can add other pieces on and stack them in a variety of configurations. The house also becomes its own transportation device. Diagonal steel members can be added to the frame making the building a truss, then a wheel assembly pins to a steel member at the rear of the house, and at the front a similar attachment is made to interface with a big rig. Within a matter of minutes the house can be outfitted to move. When it arrives at it site it is lowered onto eight concrete piers, making a minimal impact upon the earth.
Placeholder Alt Text

The Sun In Times Square

If you didn't have a chance to make it down to D.C. for the 2009 Department of Energy Solar Decathlon, now is your chance to make up for it. Starting today and running through Sunday, Virginia Tech's entry will be on display in Times Square. Known as lumenHAUS, the 800-square-foot single family home is replete with high tech features such as an iPhone interface, smart controls that automatically adjust climate systems, and of course solar power. If any of this peaks your interest, professors from the Virginia Tech School of Art + Design will be giving a presentation tomorrow night from 6:00 to 7:30 at the Hafele showroom, 25 East 26th St.