Posts tagged with "UC Berkely":

Placeholder Alt Text

Cutting-edge 3-D-printing pushes construction boundaries in an Oakland cabin

The 3-D-printed Cabin of Curiosities is a research endeavor and "proof of concept" investigation into the architectural possibilities of upcycling and custom 3-D-printed claddings as a response to 21st-century housing needs. This exploratory project is an output of Bay Area-based additive manufacturing startup Emerging Objects, founded by Ronald Rael and Virginia San Fratello, who are professors at the University of California Berkeley and San Jose State University, respectively. They also co-founded the architecture studio Rael San Fratello, whose work primarily focuses on architecture as a cultural endeavor. The Cabin of Curiosities is exemplary of Emerging Objects’ work, which dives deep into the material science of additive manufacturing while utilizing open-source tools and standard off-the-shelf printers. Due to a housing emergency in the Bay Area, the Oakland City Council eased restrictions on the construction of secondary housing units, or backyard cottages. The new rules promote more rental housing by easing parking requirements, allowing homeowners to transform existing backyard buildings like sheds and garages into living spaces, and relaxing height and setback requirements. Thusly located in a residential backyard, the one-room gabled structure brings together a collection of performative tile products, from interior translucent glowing wall assemblies to exterior rain screens composed of integrated succulent planters and textural "shingles" that push the boundaries of how quickly one can mass produce 3-D-printed architectural components. Over 4,500 3-D-printed ceramic tiles clad the exterior of the building. The firm is committed to focusing on upcycling agricultural and industrial waste products, and at times its custom materials sound more like tasting notes from a nearby Napa or Sonoma wine. Grape skins, salt, cement, and sawdust, among others, have been integrated into Emerging Objects’ products to create variety among the tiles. The project integrates two types of tiles on the exterior: a "planter" tile on the gable ends, and a shingled "seed stitch" tile wrapping the side walls and roof. The planter tiles offer 3-D-printed ceramic shapes that include pockets for vegetation to grow. The seed stitch tiles, borrowing from knitting terminology, are produced through a deliberately rapid printing process that utilizes G-code processing to control each line of clay for a more "handmade" aesthetic. No two tiles are the same, offering unique shadow lines across the facade. The cabin interior features translucent white Chroma Curl wall tiles, made of a bio-based plastic derived from corn. These tiles offer a customized relief texture inspired by the tradition of pressed metal ceilings, which historically relied on mass production through mold-making. It might be too soon to tell, but the 3-D-Printed Cabin might be our generation’s version of Muuratsalo, Alvar Aalto’s classic house circa 1953 experimenting with textured material and architectural form through its construction. "We're building this from our kitchen table, printing parts and testing solutions in real time," said San Fratello. The cabin is a departure from other investigations in 3-D-printed dwellings, many of which are unlivable and not aesthetically considered. “These are not just investigations into testing materials for longevity or for structure, but also a study of aesthetics. We see the future as being elegant, optimistic, and beautiful,” said Rael.
Placeholder Alt Text

Colorful Carbon Footprint Maps Illustrates Energy Usage Trends

University of California, Berkeley has released a new set of interactive maps illustrating national energy usage.  The visually striking if troubling images reveal a stark urban/suburban divide regarding carbon footprint, with the latter contributing far more in emissions than their city-dwelling counterparts. Average Annual Household Carbon Footprint (Source: UC Berkeley CoolClimate Network (2013) The maps were produced as part of the school's CoolClimate Network.  The three correspond to average annual household carbon footprints, household energy carbon footprint, and vehicle miles traveled respectively. Hovering your mouse over a particular region allows for a more detailed breakdown of the three categories.  The data suggests an inverse relationship between population density and carbon footprint size, which is to say that more densely populated cities tend to be more energy efficient. A further look at the numbers suggests that much of this correlation can be explained by the high transportation costs pervasive in suburbia. Average Household Energy Carbon Footprint (Source: UC Berkeley CoolClimate Network (2013) Yet before New Yorkers or any other urbanites grow too smug, the net effect of this relationship may be largely null.  The denser cities that demonstrate a relatively lower carbon footprint tend to be the very areas that  spawn the extensive suburbs possessing problematically higher ones. The correspondence between usage and population density is not applicable when only suburbs are taken into account, and in fact the opposite correlation tends to be true. Researches claimed that this finding can be explained largely by economic factors. Curious users can see how their household stacks up against their own neighbors or any other region in the country by filling out the Network's CoolClimate Carbon Footprint Calculator. Average Vehicle Miles Traveled by Zip Code (Source: UC Berkeley CoolClimate Network (2013)