Posts tagged with "UBC":

Placeholder Alt Text

Perkins+Will Builds a Sustainability Beacon

Building technology research center features wood, integrated photovoltaics, and green wall.

When John Robinson began formulating a vision for the University of British Columbia's (UBC) Centre for Interactive Research on Sustainability (CIRS), he did not start small. Robinson, who is responsible for integrating academic and operational sustainability at the university's Vancouver campus, dreamed of constructing the most sustainable building in North America, a monument to and testing ground for energy-generating strategies. Invited to join the project in 2001, architects Perkins+Will sought an approach combining passive design and innovative technology. Featuring a facade of locally manufactured wood panels, high performance glazing, solar shading with integrated photovoltaics, and a green wall sunscreen, CIRS is a living laboratory for the research and practice of sustainable design. The initial concept for the building included 22 goals centered on three themes, explained Perkins+Will's Jana Foit. First, CIRS was to have a net positive environmental impact. In addition, the structure was designed to provide an adaptive, healthy, and socially generative workplace for researchers, staff, and students. Third, CIRS would utilize smart building technologies for real-time user feedback and testing. The building envelope was a critical component of the project's overall environmental strategy on both conceptual and practical levels. "The overarching design idea is to communicate sustainability, to make it visible and apparent," said Foit. In terms of pragmatics, the architects focused on reducing heat gain and providing 100 percent daylighting to the interiors.
  • Facade Manufacturer Silva Panel (rain screen), Kawneer (curtain wall), Green Screen (vegetated screen), Solarity (PV panels)
  • Architects Perkins+Will
  • Facade Installer Heatherbrae Builders (rain screen), Glastech (curtain wall)
  • Facade Consultant Morrison Herschfield
  • Location Vancouver, BC
  • Date of Completion 2011
  • System wood rain screen, fixed sunshades with integrated PVs, green wall, high-performance glazing
  • Products Multiple Ply Cedar Panels from Silva Panel, Kawneer glazing, Green Screen vegetated screen, Solarity PVs
To reduce solar gain, Perkins+Will reduced the window area from the current code of 40 percent maximum to 31 percent. They installed fixed and operable triple-glazed windows on the ground floor, and fixed and operable double-glazed windows above. For cladding, the architects selected Multiple Ply Cedar Panels from locally-developed Silva Panel—one of the first solid wood products designed for rain screen application. "The exterior panels were detailed and designed to be removable, to allow for material testing and research," said Foit. CIRS' two-pronged solar shading program includes a network of fixed shades with integrated photovoltaics and a green wall. The former results in 24,427 kilowatt-hours per year in energy savings. The architects designed the green wall, meanwhile, to protect the west-facing atrium, which lacks a mechanical heating or cooling system. Together with a combination of solid spandrel and vision glass, the living screen achieves 50 percent shade during the warmer months. "The plants are chocolate vines, which lose their leaves in winter, allowing passive heat gain into the building," explained Foit. "In the summer, when the vines are in full bloom, the leaves provide shading for the atrium." In an important sense, the CIRS story did not conclude once construction was complete in 2011. Rather, the proof of CIRS' value as a demonstration tool is in its ongoing operations. The building returns an impressive 600 megawatt-hours of surplus energy to the UBC campus each year—and continues to rack up sustainability prizes, including the Royal Architecture Institute of Canada's 2015 Green Building Award. But perhaps more importantly, thanks to publicly available performance data and a "lessons learned" document compiled by UBC, CIRS has fulfilled Robinson's dream of promoting green design through the construction of a transparent, replicable model.
Placeholder Alt Text

Carpenters Union builds the nation’s largest training complex in Las Vegas

Every architect has horror stories about construction quality on job sites. The United Brotherhood of Carpenters (UBC) union wants to prevent that, investing $250 million for a training center in Las Vegas to teach and certify their workers. The group has been building the International Training Center, just outside McCarran Airport, over the past several years, and recently completed phase five of the complex, bringing its total size to almost 1 million square feet. The facility features more than 70 classrooms, its own dorms (with 300 guest rooms), and training shops fitted with facilities like scaffolding mock ups, concrete form making stations, a pile driver pit, flooring stations, glass curtain wall mock ups, turbine pit, a robot zone, and even a tank to practice underwater welding. Third year apprentices from around the country train here for two weeks at a time. They include general carpenters, interior systems carpenters and drywallers, millwrights, floor coverers, millworkers, cabinetmakers, framing and residential carpenters, pile drivers, lathers, scaffolders, roofers, and workers in forest-product and related industries. The UBC sponsors more than 200 training centers across North America (there are about 3,500 full- and part-time instructors associated with the UBC), but this is by far the largest. “Our job is to make sure our members are trained and ready,” said Bill Irwin, executive director of the Carpenters International Training Fund.
Placeholder Alt Text

Public’s Tree-Like Transit Shelters for UBC

An abstracted version of a street tree, a canopy of tessellated irregular polygons balances atop slim steel posts.

When Public: Architecture + Communication visited the site of the transit shelters the University of British Columbia had asked them to design, they found that something was missing. The main point of entry to the campus, University Boulevard is lined with trees—except where the bus shelters would go. “There was this language of gaps that we noticed,” said Public’s Christopher Sklar. The shelters themselves, they decided, should fill in the tree line. The designers were left with a question, articulated by Sklar: “How does it be a quiet piece but also something interesting and unusual that relates to its surroundings?” Beginning with the image of a tree’s branch structure, Public placed a wood canopy defined by a repeating pattern atop slim steel posts. As for the pattern itself, the designers considered a range of options, from Moorish patterns to simple geometric shapes. The trouble with a geometric pattern, said Sklar, is that it is “often a static thing. We looked at triangles; they’re just triangles. Add a side, it’s just a square.” But if you add one more side, you have a pentagon. And that is where things get interesting. The tessellation of irregular pentagons is surprisingly complicated, on both a mathematical and an aesthetic level. “The thing that we liked about the repeating pentagon is that it creates something that is repetitive, but it’s also something that’s fluid and dynamic,” said Sklar. “It doesn’t feel like it’s repeating when you’re actually in it. It’s kind of a flowing structure above you.” Public alternated between Rhino and Grasshopper, finding that it was easier to perfect a line drawing and plug it into Grasshopper than to allow Grasshopper to generate the tessellation. “I think it’s one of these things where it’s a new technology, people want to see what it can do, think it can help you generate forms,” said Sklar. “But it’s taking away the last thing we have left to us. We’re designers, we want to shape the thing.” The team built a full-scale model of two of the canopy’s cells to get a sense of their size, hoisting the cardboard shapes onto the ceiling pipes in their Vancouver studio.
  • Fabricator Szolid, Structurlam, Bosmon Steelworks, Columbia Glazing Systems, Dancin Timber Works
  • Designers Public: Architecture + Communication
  • Location Vancouver, British Columbia
  • Date of Completion September 2012
  • Material Glulam, steel, concrete, glass
  • Process Rhino, Grasshopper, modeling, CNC milling, welding, concrete casting
Structurlam fabricated the Glulam canopy on a Hundegger CNC machine. The steel supports were manually welded at Bosmon Steelworks. The shelter’s concrete benches were also fabricated by hand, at Szolyd. This was a surprise for Sklar, who had delivered a Rhino model of the bench design to the fabricators. But Szolyd said the design, which incorporates a series of fine edges as built-in skate-stops, would require as much work to prep the CNC machine as it would to build a mold manually—so they hired a carpenter to do just that. “Sometimes you do to all this work to make a digital model, and they’re like, ‘no, we’re just going to build it by hand,’” said Sklar. The shelters were assembled by Dan Georzen at Dancin Timber Works. Besides the wood canopy itself, the most dynamic component of the transit shelter is its surround, built of bronze-tinted glass from Columbia Glazing Systems. The tint serves three purposes. First, it cuts down on UV exposure. Second, it will give the canopy a warm cast even as the wood weathers. Finally, it creates a subtle reveal for passers-by. “When you’re approaching the shelter you see it in front of you, you can’t see through the bronze-tinted thing,” said Sklar. “Then when you get under it, it reveals itself to you. As you approach, it reflects its surroundings from all sides; then you get underneath and: ‘oh wow, look at that.’”