Posts tagged with "Technology":

Placeholder Alt Text

URBAN-X accelerator wants to transform cities, one semester at a time

Meet the incubators and accelerators producing the new guard of design and architecture start-ups. This is part of a series profiling incubators and accelerators from our April 2018 Technology issue.  The age of the car as we know it appears to be winding down—that is, if the diverse initiatives started by car companies is any indication. For example, in Greenpoint, Brooklyn, the BMW-owned MINI recently launched A/D/O, a nARCHITECTS-design makerspace and the headquarters of URBAN-X, an accelerator for start-ups seeking to improve urban life. Although URBAN-X is only two years old, the company has hit the ground running thanks to MINI’s partnership with Urban Us, a network of investors focused on funding start-ups that use technology to improve urban living. Through that partnership, URBAN-X is able to use its funding from MINI to take on companies that lack finished products or established customers and then connect them to the Urban Us community. Through a rigorously programmed five-month semester, up to ten start-ups at a time work with in-house engineering, software, marketing, and urbanism experts and given access to the outside funding and political connections that URBAN-X is able to leverage. Competition to join the cohort is fierce, especially since the chosen companies are given $100,000 in initial funding. Architects, planners, urban designers, construction workers, and those with a background in thinking about cities have historically applied. At the time of writing, the third group had just finished its tenure and presented an overview of its work, at A/D/O, at a Demo Day on February 9. The companies have since followed up with whirlwind tours to court investors and realize their ideas. The diversity of projects that have come out of URBAN-X represents the wide-ranging problems that face any modern city. The solutions aren’t entirely infrastructure-based, either. For example, Farmshelf has gained critical acclaim by moving urban farming into sleek, indoor “growing cabinets”; Industrial/Organic is turning decomposing food waste into electricity; and Good Goods has created a platform for smaller retailers to occupy space in large vacancies by pooling money. Ultimately, as cities evolve and become more interconnected, addressing the problems found within them will require ever more complicated and multidisciplinary solutions. The fourth URBAN-X cohort will be announced on May 10, 2018. Notable alumni include: Numina A start-up that uses sensor-integrated streetlights to map traffic patterns. Lunewave A technology company that claims its spherical sensor for self-driving cars is cheaper and more effective than the LiDAR (light detection and ranging) currently in widespread use (likely a win for MINI and BMW). Sencity A platform that encourages human engagement in smart cities. RoadBotics A tool that uses smartphone monitoring to improve road maintenance.0 Qucit This software aggregates urban planning data and uses AI to optimize everything from emergency response times to park planning.
Placeholder Alt Text

What role do architects have in a driverless future?

The rise of autonomous vehicles (AVs) is inevitable and—depending on who you ask—they’ll either eliminate car crashes and save the environment, or muscle out pedestrians from the street, steal our personal data, and create biblical levels of gridlock in our cities. But despite the divide over how the technology should be implemented, the common thread that runs between apostles and bashers alike is the belief that cities, planners, and architects are woefully unprepared for the changes self-driving cars will bring. In November 2017, the AIA held an event centered on the topic, "Anticipating the Driverless City,” and the furor seems justified following the death of a pedestrian at the grille of an autonomous Uber car. “Planners think in 30-year increments, and autonomous vehicles are already hitting the streets today,” Nico Larco, co-director of the Sustainable Cities Initiative at the University of Oregon, said. “Urban planners should be terrified.” Larco’s not wrong. Only a few states even have regulations for driverless cars, let alone ideas for designing a future without parking. With Ford launching self-delivering pizzas in Miami, Google’s Waymo rolling out an autonomous ridesharing service in Arizona, and driverless taxis making inroads in cities all over the world, architects and planners will either need to look ahead or be stuck in triage mode. Sam Schwartz, former New York City Traffic Commissioner from 1982 to 1986 and founder of his eponymous traffic and transportation planning and engineering firm, has categorized the potential futures as “the good, the bad, and the ugly.” The “good” A utopic self-driving car scenario would have driverless cars constantly circulating and on the prowl for riders, while providing “first mile, last mile” access to and from souped-up mass-transit corridors. If AVs truly take off and replace a sizable portion of manned cars on the street, then parking lots, garages, and driveways—not to mention thousands of square feet of on-street parking per block—would sit vacant. Walking, cycling, and autonomous (electric) buses would feature heavily in a multi-modal transit mix, and streets would narrow as bioswales and strips of public parks replaced parking spots. There has been movement on designing for that future; FXCollaborative, HOK, Arup, KPF, and other prominent firms have all put forward scalable designs for reclaiming the urban fabric. Speculation has already forced public officials in Pittsburgh to put together plans for integrating self-driving cars into the city’s fabric by 2030, and developers in New York are building flexible parking garages that can easily be converted for other uses. However, the key to actually enacting any of these schemes lies in large-scale government intervention. Without a concerted top-down reclamation and conversion of unused streets, AV-centric zoning policies, or renewed investment in mass-transportation options, cities will never be able to integrate AVs into their infrastructure. The largest hurdle to achieving the “good” future isn’t technological, it’s political; even self-driving evangelists have conceded that a laissez-faire approach might result in increased traffic on the road. The “bad” Uber, Lyft, Google, and a raft of competitors are already jostling to bring self-driving taxis to market so that these companies won’t have to pay human drivers. Under the guise of preventing traffic fatalities—there were nearly 40,000 lives lost in the U.S. alone in 2017—the big players are lobbying all levels of government to allow their AVs on the street. If vehicle miles traveled per person in AVs were allowed to increase without intervention, society could slide into an ugly scenario. This dystopic outcome would see mass transit hollowed out by a lack of funding and pedestrians shunted out of the streets in the name of safety. Studies have already shown that existing ridesharing services increase congestion and cause bus services to deteriorate, and if commuters get fed up with slow commutes and turn to ridesharing services, mass transit options could be sent into death spirals due to decreased revenue. Driverless cars are often touted as being spatially efficient, especially as they can join each other to form road trains—tightly packed groups of vehicles moving along optimized routes. But considering how much space on the road 40 bicycles or 40 commuters in a bus would take up, the flaw in that thinking becomes self-evident. Even if artificial intelligence can route traffic more effectively than a human, putting more cars on the road offsets the gains in speed by decreasing the amount of space available. Although computers might be great at coordinating with each other, the external human element will remain a wild card no matter what. Well-planned cities that prioritize walkability and ground-level experience would place pedestrians over passengers, but a worst-case scenario could see cyclists and walkers forced to wear locator beacons so that AVs could “see” them better, while hemmed in behind fencing. The “ugly” The worst driverless car scenarios take Le Corbusier’s famous claim that “the city built for speed is the city built for success” to heart. The high-speed arterial thoroughfares Corbusier envisioned in The Radiant City were realized in the destructive city planning policies of the 1950s and '60s, but municipalities have spent heavily to correct their mistakes 50 years later. Much in the same way that widening roads actually worsens traffic, if planners and architects ignore or give deference to driverless cars and continue to prioritize car culture in their decisions, congestion, gridlock, and withered public transit systems are sure to follow. The adoption of self-driving technology will likely birth new building typologies with unique needs, from centralized hubs where the cars park themselves to AV repair shops. As futurist Jeff Tumlin, principal and director of strategy at Nelson/Nygaard, points out, self-driving cars aren’t a new concept. Their lineage can be directly traced to ideas introduced by GE at the 1939 World’s Fair, but this is the first time that the technology has caught up with the vision. Planners and politicians have had 80 years to grapple with solutions; they can’t afford to take any longer.
Placeholder Alt Text

SCI-Arc show postulates a fictional energy future that doesn’t go far enough

In a recent installation at the Southern California Institute of Architecture (SCI-Arc), Mark Foster Gage Architects attempts to bring the notion of parafictional art fantasy to the realm of architecture—with mixed results. Gage’s Geothermal Futures Lab considers the notion that, given the current regime of “fake news” and “post-truth” reality, architects might have renewed license to create new visions for the future rooted primarily in fantasy. In lectures and writings, Gage argues that architects from Vitruvius onward have always engaged in some form or another with parallel or alternate versions of reality through their works and that conditions are ripe today for this tendency to take hold once again. Furthermore, Gage posits that these efforts represent a facet of the Object-Oriented Ontology (OOO) school of thought and could potentially be used to fend off the ever-increasing erosion—or flattening—of a shared reality that occurs when the people who lead and represent the nation are fundamentally preoccupied with telling lies. In the exhibition text, Gage asks, “Might architecture’s power in this new world be conducted through an elasticity of the real that encourages citizens to develop doubt about their presented realities—and therefore perhaps become more resistant to ‘fake news’ and ‘alternative facts?’” For the installation, Gage seizes this opportunity as a justification for postulating a new energy-generation technology called “laser ablation geothermal resonance” that draws its power from sources deep below the surface of the earth in order to sustainably supply Los Angeles with over two-thirds of its daily energy needs. To convey the fundamentals of this fictional energy revolution, Gage fills the SCI-Arc gallery with a stage setting meant to approximate a control center for the power generator, installing lab equipment, a metal detector, a faceted gold-leaf-covered reactor, a pile of rocks, and a collection of high-powered lasers and imaginary technical drawings for display. Technically speaking, the student-produced machine drawings are exquisite in their effusive and cheeky detail. Drawn to convey exploded axonometric views of the reactor and other components, the starkly outlined assemblage drawings also incorporate recognizable pop cultural elements, with hidden My Little Pony and Mr. Potato Head figurines buried within the constructions. The reactor mock-up is impressive in its detailing as well; it features the fractal and agglomerated geometries Gage’s other academic work is known for, while spewing fog from its lower extremity. But overall, the exhibition—and Gage’s interpretation of what parafictional fantasy in the era of “fake news” can provide to the field of architecture—falls flat. It’s not the physical objects that result from Gage’s exploration that are in question, but rather the interpretations that underlie them. For one, it belies a fundamental misreading of the current political-cultural moment to describe the Trumpian notion of “fake news” as a symptom of the so-called “great flattening” of intellectual hierarchies OOO represents. Practically speaking, “fake news” is not so much a product of the erosion of objective truth as much as it is an acknowledgment of multiple, covalent, and oftentimes contradictory perspectives that have always existed. Like it or not, “fake news” represents not merely plurality, but a new era of simultaneity writ large. The president and his lackeys have not so much created a fantasy world for their devotees to occupy as elevated a parallel existence that has always been very real to its adherents. In a lecture supporting the exhibition, Gage cites the Black Lives Matter and #MeToo movements as emblematic of “flattening” as well, a comparison that also doesn’t really apply. If OOO ideology is rooted in the “removal of human as primary subject” from perceived reality, how can two movements entirely rooted in acknowledging and prioritizing the fundamental humanity and agency of two often-maligned social groups serve as a case study? The comparison is flawed and problematic, representing a misunderstanding of not just what drives these movements, but also of what we can learn from them as architects, as well. And lastly, like so many other recent attempts at projecting future scenarios, the project is not really “speculative” in the literal sense and represents merely an intensification of existing modes and technologies, raising the question: If architecture’s power right now lies in its ability to speculate, what does it mean to have so many of its fantasies seem so underwhelmingly conventional? Southern California Institute of Architecture January 26 through March 4
Placeholder Alt Text

First-ever luxury space hotel shoots for the stars

Forget all about skyscrapers hung from orbiting asteroids, the next big trend in astronomic real estate may be in space stations. Developer Orion Span has revealed Aurora Station, a luxury space hotel that will house guests 200 miles above the Earth’s surface come 2022. First announced at the Space 2.0 Summit in San Jose, California, on April 5, Aurora Station is laying claim to the world’s first fully-modular space station. While Aurora’s first capsule will only be 43.5 feet long and 14 feet across, renderings show the station branching out as extensions are added. “We developed Aurora Station to provide a turnkey destination in space. Upon launch, Aurora Station goes into service immediately, bringing travelers into space quicker and at a lower price point than ever seen before, while still providing an unforgettable experience,” said chief executive officer and founder of Orion Span, Frank Bunger, in a press release. “Orion Span has additionally taken what was historically a 24-month training regimen to prepare travelers to visit a space station and streamlined it to three months, at a fraction of the cost. Our goal is to make space accessible to all, by continuing to drive greater value at lower cost.” The aforementioned three-month training certification, the Orion Span Astronaut Certification (OSAC), is completed in three parts; the first online, the second at Orion Span’s state-of-the-art training facility in Houston, Texas, and the third on Aurora Station itself. While rocket launches have become exponentially cheaper in recent years thanks to private competition, guests will still pay a premium for their zero-gravity stay aboard Aurora Station. A 12-day trip will cost $9.5 million per person, or nearly $800,000 per day, with a refundable $80,000 deposit. According to Orion Span, the first four months of reservations have already sold out in the three days since the station was revealed. The initial Aurora Station capsule would fit six astronauts in a 35-foot-by-14-foot living space, two of whom would be trained crew. Once onboard, guests could watch the sun rise and set as the station rotated around the Earth every 90 minutes, grow food, and use a VR setup that Orion Span has dubbed a “holodeck”. While space tourism is nothing new (Russia is aiming to attach a luxury hotel to the International Space Station by 2022), it remains to be seen how much of Orion Span’s plan will be realized. As Bloomberg notes, the company hasn’t released its funding goals or contracted a launch provider yet, and the four-year window is an ambitious one for building a space station. Still, if Aurora gets into Low Earth Orbit in 2021 and begins accepting guests in 2022, Orion Span plans to branch out into space condos and may sell attachable capsules for those looking to claim a slice of space life.
Placeholder Alt Text

AIA awards $100,000 in research initiatives grants

The winners of the American Institute of Architects’ (AIA) 11th annual Upjohn Research Initiative have been announced, and $100,000 in grants will be split among the four recipients. Those chosen will receive funding for 18 months to pursue research projects that push the boundaries of design, and their results will be published nationally. This year’s grant recipients leaned heavily on designs inspired by nature: Half of the group will study the various benefits of biophilia, while another project will examine how biodiversity impacts a structure’s ecological resilience. The 2018 winners are as follows:
  • The Impact of Biophilic Learning Spaces on Student Success
Principal Investigators: James Determan, FAIA (Hord Coplan Macht) and Mary Anne Akers, PhD (Morgan State University) With help from the Salk Institute and Terrapin Bright Green, the team will create a biophilic classroom using patterns and shapes from nature, as well as improved views and natural lighting. The performance of students in the classroom will be measured over time to examine the relationship between biophilic design and the success of the students using it.
  • Biophilic Architecture: Sustainable Materialization of Microalgae Facades
Principal Investigator: Kyoung-Hee Kim, PhD (University of North Carolina at Charlotte) How can algae be integrated into facade systems? That’s what Kim’s team is trying to find out, and the project will involve prototyping a microalgae facade and codifying best practices for using it in the future. These “live facades” have been used to generate heat and algae biomass in past small-scale projects successfully.
  • Biodiverse Built Environments: High-Performance Passive Systems for Ecologic Resilience
Principal Investigator: Keith Van de Riet, PhD, Assoc. AIA (University of Kansas) What are passive architectural systems that architects and designers can use without needing to expend operational energy? Van de Riet’s team will study the integration of biodiversity requirements into the criteria for high-performance passive systems. In this case, a full-scale living wall panel will be installed over an existing seawall in a tidal estuary. The integration of living systems with the built environment will be monitored for both the health of the panel as well as its performance in a stressful, real-world situation.
  • Tilt Print Lift - Concrete 3D Printing for Precast Assemblies
Principal Investigators: Tsz Yan Ng (University of Michigan) and Wesley McGee (University of Michigan) 3-D printing concrete has been used to great effect in producing boxy structures, but Ng and McGee will be researching how complicated wall panels can be produced in the same way. The process should theoretically allow wall panel systems to be produced in a variety of shapes and sizes, but the novel, geometric designs will need to be performance-tested before they can be used in the field. The team will also be looking into how 3-D printed panels stack up to precast-produced pieces. All of the previously published Upjohn research can be viewed here.
Placeholder Alt Text

At Lehrer, changes in construction practices requires a holistic approach to technology

If a company is looking to affect change in the AEC industry, where does it start? Artificial intelligence and machine learning are sexy (in a nerdy kind of way), but practical application is where the rubber meets the road, so to speak. That intersection is where Dareen Salama, director of technical services at design and construction advisory firm Lehrer, LLC, found herself upon completing her Master of Science in Civil Engineering & Construction Management from the University of Illinois Urbana-Champaign and entering the workforce. As the complexity of construction projects continues to grow due to advances in technology, Lehrer guides owners, developers and institutions through the process. “I started here in New York and realized [there’s a] divide between what is possible in terms of technology and what is really implemented in the industry,” she recalled. “So, then I took a step back and said, 'OK, so let’s keep machine learning and artificial intelligence on the side for now and kind of focus on the practical applications that are there.’” The project controls specialist concentrated her work on project management systems, building information modeling, project control systems, and other facets of the design and construction process to help implement new technologies within an industry that traditionally has been sluggish to adopt them.

Reaping the benefits of efficiency

The shift was pivotal. As Salama built the case for BIM, it opened the door to participate in many significant infrastructure projects across the country, including LaGuardia Airport, where she guided the Port Authority in implementing BIM and cloud-based systems to modernize its processes. After landing at Lehrer last year, Salama discovered “the real strength lies with the [building] owners. The owners have that holistic view of the full life cycle,” she explained. “They would reap the benefits of efficiency through design, construction, and facility management and operation. So that’s what Lehrer focuses on,” she said. Lehrer’s primary function is to advise clients engaged in major construction projects, but the firm’s view of a project doesn’t just begin with design and end with TCO or construction completion, however. “Aiding in delivering a beautifully-designed project within budget and schedule is a given—we are thinking beyond that, thinking about the end user, whether it is the person using the building as a resident, or the person running the building as the operator,” said Elissa Conners, marketing manager at Lehrer. “And that’s really where the data piece of leveraging the efficiency that is slowly but surely becoming mainstream in the industry in design and construction [comes in] and utilizing it to help optimize facilities, operations and maintenance when running the building.” Salama is currently involved in one of New York City’s major infrastructure upgrade projects at the Jacob K. Javits Center expansion, focusing on design, construction, and facility management to realize efficiencies through technology and innovation. Implementing technology in projects like the Javits Center and across the industry boils down to three things: technology, people, and process. “I think the industry is really facing challenges with all of that,” she noted. While many may argue technology has “arrived,” Salama disagrees as far as the AEC industry is concerned­. “The technology is out there in terms of concepts and algorithms and platforms that we use in anything else but construction,” she observed. While the industry continues to lag behind consumer electronics, for example, Salama sees growing interest from investors in startups that have emerged in the industry during the past year.

Cultural, process challenges are significant

The people variable presents an even more significant barrier to progress, not only from a hierarchical or cultural standpoint, but also in terms of attracting talent. Salama explains how on any given project, there may be 60 to 70 different companies involved, from the owner to the consultants and the subcontractors. As a result, “it’s quite difficult to change the culture throughout all these different companies and try to figure out technology that works for all of them given the duration that you have.” She notes that during the course of a three-year project, a third of that time may be spent attempting to get people on board with process and technology modifications. Additionally, she said, it’s rare to see young talent coming from computer science schools entering the AEC field. “It’s just not the go-to industry for top talent. They would definitely go in other directions,” she explained, adding that if technology graduates better understood the opportunity, the industry would be well-poised to attract them. Finally, altering construction practices requires much more than a surface-level application of new technologies—yet attempting to automate old processes is commonplace. Existing document standards, contracts, and specifications that function in the world of hard copies and standard contract delivery methods simply doesn’t translate well into cloud-based systems, BIM, and mobile apps, she noted. “It’s not an easy fix of, ‘Let’s just apply technology; let’s just buy this piece of software,’ which people are frankly looking for,” she said. “It’s not really about what you buy, but it has to be embedded in everything that you do: your people, your process, and then at the end, what you buy fits that world.”
Placeholder Alt Text

Katerra promises to transform the construction industry without sacrificing design

“Every building shouldn’t be a one-off prototype.” That’s an underlying and provocative premise behind Katerra, a technology company that’s on a mission to optimize the way buildings are developed, designed, and constructed. Truth be told, the industry is primed for an overhaul. Construction companies traditionally invest less than 1 percent of revenue in new technologies—lower than every other major industry, according to the company’s literature. As a result, simultaneous productivity decreases and cost increases during the last several decades have created a quandary that requires fresh thinking and outside-of-the-box solutions. “The one thing that’s become very apparent is that—and this is typical in an up-cycle—it’s very difficult for architects and contractors to keep up with material costs, with cost escalation in these upturn markets,” explained Craig Curtis, FAIA, Architecture, Interior Design at Katerra. “And if you couple that with the fact that the skilled labor shortage is becoming more and more critical, where we’re headed right now as an industry I think is kind of a train wreck.” To help avert such a debacle, Katerra is completely rethinking the existing construction model and replacing it with technology, design, and supply chain innovations that aim to revolutionize the world of architecture and construction.

 The Silicon Valley Approach to Building

“What we’re trying to do is take on every aspect of the entire process as the Silicon Valley way of looking at an industry so that it’s not just focused on supply chain, which is where we started,” Curtis explained. “We’re really looking at from initial site concepts to own the process all the way through design, through component design, manufacturing drawings, offsite manufacturing, and final site assembly—the entire package all in one with one hand to shake.” [youtube https://www.youtube.com/watch?v=OyoTBNLaXAg] For those who cringe at the term “mass customization” and shudder at the thought of a skyline full of banal, indistinguishable prefabricated structures, take heart: Katerra is, at its core, a company in the business of preserving and improving the design process, rather than dismantling it. “We’re a design-first company here,” Curtis noted. “This is not a company that is producing cookie-cutter-looking buildings; the cookie-cutting part of what we’re doing is all stuff that can easily be redundant without affecting the beauty of the architecture,” he continued. “So, we’re really concentrating on making sure that everything we do allows for that customization of not only the experience inside, but also how the building fits into a particular culture or climate or place.” In other words, Katerra does not build prefabricated modules or completed hotel room pods, for example, and truck them down the highway on a flatbed. Rather, Curtis said the company takes a cue from global furniture giant IKEA to flat-pack building materials and interior components to improve logistics and reduce shipping costs. By doing so, it offers greater flexibility in the final look and feel of a building and allows architects to do more of what they do best—not less. “By optimizing a lot of the interior and the systems that are within these buildings, we’re actually finding that as architects, we have more time to spend instead of less time to spend on the thing that really matters and that’s: What does the building look like and how does it fit into a community?” Curtis said. “We’re not spending all that time redrawing bathrooms or mechanical systems or electrical layouts because that’s done; it’s repetitive. A lot of that work can be done in the computer,” he added.

Executing the Design

Katerra operates under another premise as well: “A transformative approach to building begins with design.” As such, the company developed a novel building system to strike a balance between standardization and configuration. Based upon a standard kit of parts, Katerra’s design system utilizes structural building components and curated interior products and finishes to create a multitude of elegant, custom configurations, according to company literature. Katerra’s BIM modeling links directly to its global supply chain through proprietary technology to ensure ease of ordering, tracking, and manufacturing. Its integrated logistic network, global product sourcing, and manufacturing teams reduce the number of suppliers and manufacturers, creating aggregate demand that establishes negotiating power to the benefit of clients.  The company’s end-to-end building process mimics the process of precision-sequenced product assembly, moving labor from the job site to its factories, promising improved schedule and product quality assurance. “We have customers who are very interested in having a partner who can create a more systemized approach to what they do and just streamline the process from the very beginning,” Curtis explained. “Instead of every single project being bespoke and starting with an entire new team, which is what the industry has been forever, we can become their partner and help them develop their systems, building tools, and custom assemblies suited for their operation and what they do and what they do well, and help them execute that faster and cheaper.”
Placeholder Alt Text

A modular apartment factory is set to touch down in Chicago

Chicago-based general contractors Skender are getting into the modular manufacturing game, with an announcement that they will be building a factory on Chicago’s southwest side that can crank out hotel rooms and entire apartments. Skender is going all in on the new factory and modular fabrication startup, which they claim will put 100 people to work (an impressive number, as Skender only has 300 employees), and is using the opportunity to shift towards a design-build model. The company has bought out local firm Ingenious Architecture and will use the 10-person studio to guide the design and manufacturing of the modular units. Tim Swanson, formerly the head of CannonDesign’s Chicago office, will be joining as Skender’s chief design officer, Kevin Bredeson has been named the chief technology officer, and the company is hunting for a CEO to lead its factory. The move represents a huge expansion in scope for Skender, which has also changed its name from Skender Construction as part of the new direction the company is pursuing. “We are asking new questions,” said Skender President and Partner Justin Brown in a statement. “Why can’t we apply sophisticated design principles to modular manufacturing? How can we eliminate weather delays by bringing large parts of the process indoors? How can we significantly boost productivity without sacrificing quality?” Skender is expecting to roll full apartments, hotel rooms, and pieces of both multi-family residences and healthcare buildings off its new assembly line. Everything can be fabricated at the factory by tradespeople, from cabinets to light fixtures to units that have been pre-wired and set up for plumbing, then shipped to the potential construction site and unloaded via crane. Besides being able to construct modular buildings from the ground up (similar to New York’s Carmel Place), Skender plans to use the factory to work on both the interior and exteriors of its projects simultaneously, and standardize production. To say that modular architecture has had its ups and downs in recent years would be an understatement. While the world’s largest modular hotel, the Stephen B. Jacobs Group-designed CitizenM, is nearly complete in New York, the industry is still smarting from the bruising battle it took to complete 461 Dean Street in Brooklyn. The Pacific Park tower eventually became the world's tallest modular building, but was mired in lawsuits between Skanska and developer Forest City Ratner until the latter cut their losses and sold their modular manufacturing factory to architect Roger Krulak and his company, FullStack Modular. It remains to be seen if Skender can make the model work for them, but their smaller scope should help. If all goes as planned, Skender expects to pick a site for the factory in the coming months and to begin production in the fourth quarter of this year.
Placeholder Alt Text

Cutting-edge 3-D-printing pushes construction boundaries in an Oakland cabin

The 3-D-printed Cabin of Curiosities is a research endeavor and "proof of concept" investigation into the architectural possibilities of upcycling and custom 3-D-printed claddings as a response to 21st-century housing needs. This exploratory project is an output of Bay Area-based additive manufacturing startup Emerging Objects, founded by Ronald Rael and Virginia San Fratello, who are professors at the University of California Berkeley and San Jose State University, respectively. They also co-founded the architecture studio Rael San Fratello, whose work primarily focuses on architecture as a cultural endeavor. The Cabin of Curiosities is exemplary of Emerging Objects’ work, which dives deep into the material science of additive manufacturing while utilizing open-source tools and standard off-the-shelf printers. Due to a housing emergency in the Bay Area, the Oakland City Council eased restrictions on the construction of secondary housing units, or backyard cottages. The new rules promote more rental housing by easing parking requirements, allowing homeowners to transform existing backyard buildings like sheds and garages into living spaces, and relaxing height and setback requirements. Thusly located in a residential backyard, the one-room gabled structure brings together a collection of performative tile products, from interior translucent glowing wall assemblies to exterior rain screens composed of integrated succulent planters and textural "shingles" that push the boundaries of how quickly one can mass produce 3-D-printed architectural components. Over 4,500 3-D-printed ceramic tiles clad the exterior of the building. The firm is committed to focusing on upcycling agricultural and industrial waste products, and at times its custom materials sound more like tasting notes from a nearby Napa or Sonoma wine. Grape skins, salt, cement, and sawdust, among others, have been integrated into Emerging Objects’ products to create variety among the tiles. The project integrates two types of tiles on the exterior: a "planter" tile on the gable ends, and a shingled "seed stitch" tile wrapping the side walls and roof. The planter tiles offer 3-D-printed ceramic shapes that include pockets for vegetation to grow. The seed stitch tiles, borrowing from knitting terminology, are produced through a deliberately rapid printing process that utilizes G-code processing to control each line of clay for a more "handmade" aesthetic. No two tiles are the same, offering unique shadow lines across the facade. The cabin interior features translucent white Chroma Curl wall tiles, made of a bio-based plastic derived from corn. These tiles offer a customized relief texture inspired by the tradition of pressed metal ceilings, which historically relied on mass production through mold-making. It might be too soon to tell, but the 3-D-Printed Cabin might be our generation’s version of Muuratsalo, Alvar Aalto’s classic house circa 1953 experimenting with textured material and architectural form through its construction. "We're building this from our kitchen table, printing parts and testing solutions in real time," said San Fratello. The cabin is a departure from other investigations in 3-D-printed dwellings, many of which are unlivable and not aesthetically considered. “These are not just investigations into testing materials for longevity or for structure, but also a study of aesthetics. We see the future as being elegant, optimistic, and beautiful,” said Rael.
Placeholder Alt Text

Boeing to sell flying taxis

Aerospace company Boeing aims to begin selling electric people-carrying drones within the next ten years. “I think it will happen faster than any of us understand,” Boeing CEO Dennis Muilenburg told Bloomberg. “Real prototype vehicles are being built right now. So the technology is very doable.”
Boeing's announcement is the latest in an explosion of news—and corresponding excitement—around driverless cars and other forms of transportation previously found only in science fiction. On April 2, fully autonomous vehicles can hit the streets in California, while truck company Peterbilt is pioneering technology for self-driving big rigs. Las Vegas, meanwhile, is testing a self-driving public transit shuttle, while further west, Uber and NASA are teaming up to bring flying cars to Los Angeles. And let's not forget about the Hyperloop: Elon Musk has received exploratory permits for a New York to D.C. route for the ultra-fast conveyance he's developed, and this week, Virgin Hyperloop One debuted its first pod prototype in Dubai.
Placeholder Alt Text

A new startup aims to make every construction site safer, faster

Every year, thousands of people – an average of three per day – die from accidents on construction sites in the United States alone. One of the driving forces behind this trend is the paucity of safety inspectors. Now, some engineers are turning to tech to make the safety inspection process easier and more accessible, turning construction sites less deadly in the process. This is what led Ardalan Khosrowpour to found OnSiteIQ in 2017. Khosrowpour has a background in engineering and says that as someone who had grown up around construction sites, he’d seen the negligence that exists in the industry. “Construction is the second least digitized industry after agriculture, and as a civil engineer, I believe that our industry deserves better than this,” said Khosrowpour. His program, usable from anywhere and on any device, allows anyone to remotely inspect a construction site using a technology-based documentation system, promising to cut down on the fatalities, injuries, and insurance costs. Here’s how it works: the company has a network of data collectors, each armed with a 360-degree camera, to walk through an entire construction site twice monthly, recording all the while. This video is then uploaded onto the platform and gets automatically mapped onto the site’s floor plans using a built-in computer vision algorithm. The result is called a 3D “panograph” – a large, wraparound digital image created from these photos and video clips strung together. Because all of the collected data is geolocalized and timestamped, users can pinpoint exactly when and where site conditions might be changing. An artificial intelligence system trained to highlight potential safety hazards expedites this process. This is all a far cry from the traditional, pen-and-paper methods used to document, inspect and assess the potential hazards on a construction site. In short, it “enables any stakeholder from any location to virtually walk the site and do their own inspection,” says Khosrowpour. This program also consolidates this data into easy-to-read graphs, allowing users to quickly track when, where, and how often a particular safety issue, like a missing guard rail, occurs. The program’s location-based technology also tracks where on-site the most safety issues are occurring. All of this together allows users to quickly assess and eliminate any potential safety risks, and any comments about a site can instantly be annotated, tracked, and shared among those that need to know. Khosrowpour presented OnSiteIQ at the BuiltWorlds Project Conference this past week at Grand Central Tech in Manhattan. The conference was dedicated to discussing the emerging technologies meant to augment city planning and architecture. OnSiteIQ was one of the finalists of the NYC Startup Challenge – a shark tank-style pitching session, where CEOs of five selected technology-based startups presented their projects to a panel of judges from the construction and urban planning fields. The winner would attend this year’s Builtworld Summit: a prime opportunity to drum up new clientele and reach potential investors. Though the competition was close, OnSiteIQ ultimately came in second. While the judges liked the concept, their main concern was how this concept could evolve into a continuous and real-time monitoring system on the job sites. RoadBotics, an URBAN-X cohort member using phones to survey road conditions and AI to assess them, took home first place. Since its inception, OnSiteIQ has collected over 3.7 million square feet of data using its twice-monthly data collection model. The program is available through a monthly subscription from the program’s website with three different tiers depending on the services required for a project. Depending on what a user needs, they can choose to focus on documentation and safety inspection alone, or they can add in risk-assessment technology.
Placeholder Alt Text

Driverless cars set to roll in California after rule change

Come April 2, California will see fully autonomous vehicles (AVs) hit the streets after the state’s Department of Motor Vehicles (DMV) ruled that the cars don’t need a human in the driver’s seat. First proposed in October, the change means that the 50 companies registered to test self-driving cars in the state could start to ramp up the scale of their projects. The changes come as other states, like Arizona, have seen tech companies ramp up their investments in self-driving cars thanks to a lack regulations. Once the rule takes effect, these vehicles will only need an operator to monitor the car remotely, similar to flying a drone, just in case. Uber, Google’s self-driving car initiative Waymo, General Motors and other big-name players in the industry hailed the move as a major step forward in rolling out AVs on a mass scale. "This is a significant step towards an autonomous future in the state, and signals that California is interested in leading by example in the deployment of autonomous vehicles," Uber spokesperson, Sarah Abboud told The Sacramento Bee. "With this effort complete, we look forward to working with California as it develops regulations applicable to autonomous trucks." Even though it seems as if California is easing off the gas, companies will still be required to report their "disengagements," or human takeovers. While the self-driving cars being tested for mass market production use an array of cameras, radar sensors and satellite data to navigate, the technology isn’t perfect, and most AVs are tested in flat, open landscapes without pedestrians. After April we might see self-driving cars expand their reach onto busy streets or highways, but a full-on integration with manned traffic still seems unlikely. The industry leader in disengagements, Waymo, still reports needing a human takeover about every 5,600 miles, even as the company has announced that it would be launching a driverless ride sharing service in Phoenix, Arizona later this year. Despite the promised safety and environmental benefits that fully autonomous cars would bring (not to mention self-delivering pizzas), consumer advocacy groups have complained that rushing to bring AVs to real streets could endanger lives. Nonprofit organization Consumer Watchdog railed against the decision, releasing a statement accusing the DMV of prioritizing speed over safety. Although advancements in self-driving technology have been promising, the group wrote, “Even if the robot cars were to reach the highest level of perfection (which they are nowhere near, despite what clever marketing might have you believe!), robot cars will co-exist in a world with other humans, who will continue to act in unpredictable, non-robotic ways. Put simply: the robot car world will not be perfect, despite what the technocrats may have you believe.” With more autonomous vehicles set to take up space on public streets, it remains to be seen how well they’ll integrate with our messy, irrational transit system.