Posts tagged with "rigidized metals":

Tex-Fab’s Rigidized Metal SKIN

A structural, textured metal system wins first place in a competition and the chance to develop a façade with Zahner.

Reinforcing the idea that time fosters wisdom, Nicholas Bruscia and Christopher Romano’s third iteration of a structural architectural screen was awarded first place in Tex-Fab’s digital fabrication competition, SKIN. According to Tex-Fab’s co-director, Andrew Vrana, the team’s 3xLP project was selected for its innovative façade system, which uses parametric design and digital fabrication. The 3xLP designers’ exploration of the relationship between academia and manufacturing merged at the University at Buffalo’s (UB) Department of Architecture. Starting their collaborative research with a digital model, Bruscia and Romano solicited the help of local manufacturer Rigidized Metals, (RM), who helped realize the second stage of the project’s evolution with two thin gauge metals featuring proprietary patterns. “The project is important because we’ve partnered so closely with Rigidized Metals,” Roman told AN. “We’ve brought digital and computational expertise, and they’ve provided material knowledge for textured metal—it’s a reciprocal team.”
  • Fabricator Rigidized Metals
  • Designers Nicholas Bruscia and Christopher Romano with Phil Gusmano and Dan Vrana
  • Location Buffalo, New York
  • Date of Completion October 2013
  • Material 1RL+4LB textured stainless steel, 16-20GA, steel bolts
  • Process Grasshopper, Lunchbox, Karamba, Rhino, AutoCAD, CNC Turret Punching, Hydraulic Press Brake humping, Tab/Bolt Connecting
Bruscia said the computational models were heavily informed by material parameters. Working with various patterns in RM’s product library, the team started to see various textures performing differently in structural applications, though the company’s metals are typically used in cladding or decorative applications. “Rigidized Metals’ patterns are stronger than flat metals,” Romano said. “That informed how we selected textures and which became a part of the computational conversation.” Drawn to the geometry of the embossed 4LB sheet, they found the low relief pattern to perform comparably to a deeply stamped-style, and that it complemented other chosen patterns nicely. Structural loading was tested in Karamba, an architect-friendly finite element method analysis plugin for Rhino that was developed recently in Austria. Designed primarily in Rhino 5 and Grasshopper, the team also wrote many of their own scripts. For the SKIN competition, the team adjusted porosity of the screen to increase transparency for façade applications. The screen’s pattern is articulated from all perspectives, creating a dynamic quality that is achieved by a slight twist through the entire structure. “The twist in the system is a result of us getting the geometry on the screen for the system to perform structurally, and to make it possible to fabricate,” Romano said. “Some geometric moves on the screen can be difficult to fabricate, so to remove those you get subtle twisting in the elevation.” At RM’s Buffalo facility, profiles of the system’s components were turret-punched on a CNC, and folded on a press break to achieve a diamond shape. A tabbing system was also milled so the shapes could be fastened with stainless bolts to form a seamless, continuous cell structure. As part of the SKIN competition, Bruscia and Romano will continue working with RM, as well as A. Zahner Company, to fabricate a façade system with a glazing component. The 3xLP team will exhibit their results at the Tex-Fab 5 event in Austin, Texas on February 19.

A Plus Design for Elevator B Hive

Fabrikator

The 22-foot Elevator B honeybee habitat was the winning proposal in a design competition sponsored by Rigidized Metals and the University at Buffalo.

The disquieting phenomenon of colony collapse disorder is seeing global bee populations vanish before our eyes, threatening the pollination of much of the world’s food crops. So when Buffalo, New York, metal fabricator Rigidized Metals discovered a colony of bees in an abandoned grain silo that its owner purchased, the company sponsored the Hive City competition. Students at the University at Buffalo (UB) were invited to design a viable bee habitat that would spark interest in the Silo City area and demonstrate the strengths of various building materials suppliers in Buffalo’s First Ward. As the first, permanent new construction on the Silo City site, Rigidized Metals wanted something that would be visible from nearby Ohio Street, stand out in the industrial landscape, and be reverent to neighboring silos. The winning design, known as Elevator B, is a 22-foot tower of 18-gauge sheet metal panels, with strategic perforations for natural ventilation, light, and heat management. An operable bee "cab" in the interior supports the actual hive on a pulley system, allowing beekeepers to access the colony and return it to a level that keeps the population safe from predators.
  • Fabricators Rigidized Metals, Courtney Creenan, Kyle Mastalinski, Daniel Nead, Scott Selin, Lisa Stern
  • Designers Courtney Creenan, Kyle Mastalinski, Daniel Nead, Scott Selin, Lisa Stern
  • Location Buffalo, New York
  • Date of Completion May 2012
  • Material plywood, steel, 18 gauge sheet metal, self-tapped screws, cypress, laminated glass
  • Process Grasshopper, sawing, welding, laser cutting
"We did lots of research on how bees build hives and colonies," said Courtney Creenan, a student at UB's School of Architecture and Planning, and one of the designers of Elevator B. "The structure also induces the motion of standing inside of and looking up through a grain silo, where you have no where to look but up." However, instead of a perfectly rounded oculus at the tower’s summit, Elevator B viewers see the outline of a honeycomb. The student design team mocked up the tower with plywood cutouts in UB's School of Architecture workshops and Rigidized Metals fabricated the panels, but the design was completed in Grasshopper. The software helped determine a workable pattern of perforations, particularly along the top of the elevator where winds could compromise stability. In the team’s initial design, all of the 70 metal panels received an 80 percent perforation, though each had a unique number of cuts in a unique array. Grasshopper brought out the commonalities from these disparate patterns, and allowed the team to scale back to six types of panels with maximum perforations of 60 percent. "You can barely see a difference," Creenan commented. Once the design was simplified in Grasshopper, the Elevator B team devised a matrix to deliver to Rigidized Metals that indicated the number of panels to be fabricated and which had to be folded around the corners of the tower's steel frame. To ensure accurate installation on-site, each panel was numbered. Since the grain silos are unoccupied most of the time, with the exception of special events and tours, the tower had to be vandal resistant. The students fastened the panels to the frame with self-tapping screws, which required no predrilling. The steel frame was hand-made and the panels were machine-formed, but Creenan said there was little error and the pieces came together easily onsite. Beekeeper Phillip Barr successfully relocated the bee colony in the spring of 2012 and it has survived its first Buffalo winter. With the warmer weather, the colony's member numbers are on the rise. And though Elevator B was designed specifically for bees, Creenan said that other animals have taken a shine to the tower. “Before [the bees] moved in we noticed robins had nested there," she said. Though the design team hasn't been approached about adapting its design for other animals throughout Buffalo's Olmsted-designed park system, Creenan likes the idea. "It'd be interesting to test this somewhere else in the city," she said.