Posts tagged with "mit self assembly lab":

Placeholder Alt Text

Responsive fabric and cannibalistic materials: A look at MIT’s experimental projects

Academia has always been a hotbed for innovation, and as part of a new series on under-the-radar projects on university campuses, AN will be taking a look at the smaller projects shaking things up at MIT. Modernized applications of ancient techniques, robotically milled artifacts, and boundary-pushing fabrication methods are producing new materials and structures worth publicizing. Cyclopean Cannibalism For the research and design studio Matter Design, contemporary reinterpretations of ancient construction and crafting techniques are valuable sources of new architectural insight. The studio, a 2013 winner of the Architectural League Prize for Young Architects + Designers, found that a Bronze Age stone-stacking technique was a fertile testing ground for exploring new uses of construction waste. Forming walls and structures by fitting boulders and large stones together without working or cutting them first, also known as Cyclopean masonry, is a technique that developed independently all over the world. The limestone boulder walls of the ancient Mycenaean Greeks were supposedly constructed by cyclopes, the only creatures strong enough to move such large rocks. The Inca used this methodology in the 15th century, but unlike the Greeks, they regularly disassembled previously-built walls for new materials, creating cities that were constantly in flux. This recycling of construction materials piqued the interest of Matter Design principals Brandon Clifford and Wes McGee, who wanted to apply the same principles of adaptive, sustainable design to the mountains of architectural debris clogging landfills around the world. The resulting “cookbook” is a prescription for turning cast-off precast concrete into new structures. In The Cannibal’s Cookbook, Matter Design has created a tongue-in-cheek collection of recipes for turning rubble into reusable materials. The limited-run book is one part primer on how to select stones based on their shape, one part practical instruction guide, and one part guide to one-eyed mythological creatures from around the world. Not satisfied with a theoretical tome, Matter Design teamed up with fabrication studio Quarra Stone Company to build Cyclopean Cannibalism, a full-scale mock-up of one of their recipes. The resulting wall, a curvilinear assembly of concrete rubble and stone, was installed at the 2017 Seoul Biennale of Architecture and Urbanism in Seoul, South Korea. Other Masks Cambridge-based WOJR, named after founder and principal William O’Brien Jr., creates work that bridges the gap between architecture, culture, urbanism, and art. In the exhibition Other Masks, the studio explored the intersection between architectural representation and artifacts, where drawings and models cross over into the realm of physical objects capable of being interpreted in different ways. During the Other Masks show, which ran at Balts Projects in Zurich, Switzerland, the WOJR team filtered architectural detailing through the lens of masks. Masks are artifacts with significant cultural value in every society, and transforming the facets, grids, angles, and materials typically found in a facade into “personal” objects was meant to imbue them with the same cultural cachet—and provoke viewers into wondering who crafted them. WOJR designed seven unique masks and a stone bas-relief for the show, enlisting the help of Quarra Stone to fabricate the pieces. Unlike its work for Cyclopean Cannibalism, Quarra Stone used robotic milling combined with traditional techniques to give the sculptural objects a high level of finish. Other Masks sprung from WOJR's unbuilt Mask House, a cabin designed for a client seeking a solitary place to grieve in the woods. Through this lens, WOJR created what they call “a range of artifacts that explore the periphery of architectural representation.” Active Textile The work of MIT’s Self-Assembly Lab is regularly publicized, whether it is the lab’s self-assembling chair or a rapid 3-D printing method developed with furniture manufacturer Steelcase that allows for super large prints in record time. The lab’s latest foray into active materials, Active Textile, is the culmination of a three-year partnership between lab founder Skylar Tibbits and Steelcase in programmable materials. Imagine a world where, after buying a pair of pants, a store associate would then heat your clothes until they shrank to the desired fit. Or a high-rise office building where perforations in the shades automatically opened, closed, twisted, or bent to keep the amount of incoming sunlight consistent. In the same way that pine cones open their platelets as humidity swells the wood, the fabric of Active Textile mechanically reacts to light and heat. The team thinly shaved materials with different thermal coefficients—the temperatures at which they expand and contract—using a laser to minimize waste, and laminated the layers to form a responsive fabric. The fabric was stretched between a metal scaffolding. Applied-material designers Designtex digitally printed patterns on both sides; the front was printed to allow the fabric to curl in response to heat, while the back allowed light to shine through. Active Textile is currently on view at the Cooper Hewitt, Smithsonian Design Museum’s The Senses: Design Beyond Vision exhibition through October 28. The Self-Assembly team is researching more commercial uses for the material, such as in self-adjusting furniture or programmable wall coverings.
Placeholder Alt Text

The MIT Self-Assembly Lab prints squishy, tactile lighting fixtures

The MIT Self-Assembly Lab and Swiss designer Christophe Guberan have unveiled a range of new lighting and household items that are 3D-printed in soft materials and then inflated to their proper sizes. Liquid to Air: Pneumatic Objects is currently on display at the Patrick Parrish Gallery at 50 Lispenard Street in Manhattan through August 26. The Self-Assembly Lab team, consisting of Björn Sparrman, Schendy Kernizan, Jared Laucks, and Skylar Tibbits, were able to “draw” the malleable objects using rapid liquid printing. The experimental process is a collaboration between the lab and furniture company Steelcase and can be used to rapidly print large-scale products in a variety of materials. Prints are “drawn” in a vat of gel using a variety of extruded materials–everything from rubber to plastic–that only stick to themselves and not the gel. The prints are limited only by the size of the container holding them, don’t require supports, and can contain variable thicknesses within a single object, representing a huge leap forward for 3D printing technology. For Liquid to Air, the team printed table lamps, pendants, and sconces from silicone rubber and inflated them into round, buoyant fixtures with a malleable finish. Walking through Patrick Parrish Gallery, visitors are encouraged to touch the final products, which also include multi-chambered vessels used as vases and holders for stationery. A hands-on exploration reveals that everything is soft to the touch and rebounds after squeezing, demonstrating the potential of rapid liquid printing to create complex but durable objects. Liquid to Air isn’t the first collaboration between the Self-Assembly Lab and Guberan. The team has worked together since 2014, and last year they printed a series of mesh handbags and lighting fixtures for Design Miami 2017 and used rapid liquid printing to churn out unique pieces in a matter of minutes.
Placeholder Alt Text

Furniture with its own Mind: Researchers at MIT Create Self-Assembling Chair

Scientists at MIT dream of autonomous assembly lines that are free of machinery, human intervention, or fossil fuel expenditure—and still run 24/7. Researchers at the Self-Assembly Lab recently debuted a chair that assembled itself in a water tank over a period of seven hours. Each of the six component parts is embedded with a magnet and like an enzyme or jigsaw piece, each one has a unique connection point for hooking on to the others, thus dictating the final form. The assembly process, however, is anything but controlled. Fans at the bottom of the tank generate turbulence in the water, jostling the pieces and encouraging a series of trial-and-error collisions which eventually sees complementary pieces latch onto one another. “At close proximity, each piece should easily connect with its corresponding component but never with another one,” Bailey Zuniga, a student who led the research, told Wired. Self-assembly means finding a balance between randomness and control. One ultimate goal is self-repairing infrastructure, but too much leeway could make it very difficult to achieve a desired final form. Before vowing to never shell out another extortionate check for furniture delivery and installation, note that the chair is a mere six inches tall. A human-sized chair is in the pipeline as part of the Fluid Assembly Furniture project led by Skylar Tibbit. At present, the team is amassing quantitative data to better understand material properties and why certain shapes work better than others. “Finding a way to make the pieces more interchangeable would increase the chances of the pieces finding their matches,” said Zuniga. Other recent forays into self-assembling modules is the Aerial Assemblies project, in which 36-inch helium-filled balloons with fiberglass frames self-configure into a structural lattice in mid-air.