Posts tagged with "MDF":

Bookshelves for unwritten books on display at the Storefront for Art and Architecture

The Vito Acconci- and Steven Holl-designed rotating facade panels of the Storefront for Art and Architecture have been retrofitted with bookshelves filled with unwritten books for a new exhibition titled Architecture Books / Yet to Be Written, now on view through August 25. The installation is designed by New York-based practice Abruzzo Bodziak Architects (ABA) and is part of the New York Architecture Book Fair, a new initiative from the Storefront. The shelves are made of painted MDF, and will hold book covers and titles of books “that we should have written, but that we never did, and books yet to be written, that we still should,” according to a statement from the Storefront. The initiative named Yet to be Written was launched to start discussions about the opportunities missed by architects and architectural theorists. The exhibition starts with mostly empty shelves. The shelves gradually fill up as "non-profit organizations, students, independent publishers, creative collectives and gallery visitors” nominate books to the Storefront. Check out this link for more details.

Clive Wilkinson Architects Makes a Superdesk

Endless table materializes intra-office connectivity in plywood, MDF, and epoxy.

When Culver City-based Clive Wilkinson Architects (CWA) sat down with representatives of the Barbarian Group to discuss renovating the advertising agency's new 20,000-square-foot office, one word kept coming up: connection. "Before, they were all in offices designed for one person, but crammed five in each, and scattered," recalled associate principal Chester Nielsen. "It was a pain. Bringing everyone into the open, and having them feel like they were all connected was super important." The architects elected to "surgically gut" the leased New York Garment District loft to create a central workspace for between 125-175 employees. To materialize the theme of connection, they zeroed in on the idea of a single work surface, an endless table later christened the Superdesk. With 4,400 square feet of epoxy-coated surface atop a support structure comprising 870 unique laser-cut plywood panels, the Superdesk is a triumph of programmatic creativity. "Building a big table was not an obvious solution," said Nielsen, "but it's a simple one." The Superdesk began as a series of sketches by president Clive Wilkinson. "Upon first impression we got to this squiggly table," said Nielsen. "It worked really well. Honestly, we've just been refining that." The table's undulating surface lifts and lowers, to indicate subtle divisions between departments, and to create arched overpasses above intra-office "cow paths." The grotto-like spaces under the archways double as intimate gathering areas for up to eight people.
  • Fabricator Machineous LLC
  • Designers Clive Wilkinson Architects
  • Location New York, NY
  • Date of Completion 2014
  • Material 2-by-4 lumber, plywood, plate steel, MDF, paint, epoxy
  • Process sketching, physical models, Revit, Rhino, laser cutting, bolting, bonding, painting, continuous epoxy pour
From the sketches, the architects built two physical models—the first rough, the second more refined—before taking the design into Revit and Rhino. There they further fine-tuned the form and prepared it for fabrication by Machineous LLC. "Machineous wanted the project very much; they were a good partner on this," said Nielsen. "We worked back and forth to tweak what we needed to make the table constructible." Machineous laser-cut the component parts, including the plywood ribs that shape the Superdesk's archways, using vintage automotive-industry robots. Machineous flat-packed the cut pieces and shipped them to New York, where the desk was assembled on site. The Superdesk's walls are framed in 2-by-4 lumber faced with plywood; plate steel brackets connect the various wood elements. Machineous bonded the MDF tabletop and painted it a shimmering white to give it the appearance of a single connected surface. The crowning achievement of the fabrication process—and the literal polish on the project—was a continuous epoxy pour, completed by rotating teams over a 24-hour period. Despite the complications inherent to prefabricating and installing a massive piece of furniture on opposite coasts, CWA and Machineous managed to deliver their innovative take on contemporary office culture both on time and within Barbarian Group's tight budget. "Something quite notable from the perspectives of both design and fabrication is that it's the same cost as going to Office Depot" for conventional desks, noted Nielsen. What is more, with plenty of surface area for laptops and the other, increasingly minimal, accoutrements of the modern workplace, and with a data and power track built into its walls, the Superdesk "is very, very flexible," he said. "Unlike a typical office [layout], it can change in a day."

Pratt Floats Student Work on a Mylar Cloud

Installation inverts conventional relationship between architectural models and images.

Each year, a group of Pratt Institute graduate students is challenged with pushing the boundaries of exhibition design as they curate the student work from the previous year. "The basic brief is for it not to be a show where it's work on white walls, but that there's an installation component," said Softlab's Michael Szivos, who co-taught the 2014 exhibition course with Nitzan Bartov. The spring show coincides with the publication of Process, a catalog of student projects. "The book shows it in that more normative condition, year by year," said Szivos. "The installation works in tandem with that. The hope is that the students come up with something different." This year Szivos' students passed the test with flying colors, constructing a floating display out of Mylar, medium-density fiberboard, cardboard, and Tyvek that upends the conventional relationship between architectural models and two-dimensional images. Most of the students' initial concepts had to do with producing a cloud-like space, a display surface that would have an interior as well as an exterior. They eventually translated the cloud into a Mylar net that acts as both surface and structure. Architectural models, typically relegated to podiums on the fringes of an exhibition, are given pride of place on integrated MDF platforms perforated with attenuated cardboard tubes. The visual work, in turn, is placed on the ground, positioned as if it is being projected from the suspended tubes. Conventionally, said Szivos, "the hard layer is usually resting on the ground; then you have the visual layer above it. Here, the hard surface is flipped upside down and floating."
  • Fabricator Mike Szivos/Softlab, Nitzan Bartov, Pratt graduate students
  • Designers Mike Szivos/Softlab, Nitzan Bartov, Pratt graduate students
  • Location Brooklyn
  • Date of Completion 2014
  • Material Mylar, MDF, cardboard, Tyvek, grommets, fashion snaps, galvanized pipes, pipe clamps
  • Process Rhino, Kangaroo, laser cutting, CNC milling, sawing, snapping, hanging
Visitors access the models by ducking underneath the Mylar cloud, then standing within one of several holes in the bottom surface. "The goal was that the models would actually be seen at eye level," said Szivos. "In this case, it's almost as if it's a city of models. Each zone is a place where the models can be viewed on real architectural terms." A second goal was surprise, which the students achieved by concealing the models behind diamond-shaped Tyvek panels attached to exterior of the net. "You don't know what's inside until you engage," said Szivos. The students engineered the cloud structure using Rhino and Kangaroo. In just two months—the exhibition is timed for Pratt's spring open house—the students finalized the design and decided how to fabricate it. The bulk of the cloud is made of laser-cut Mylar panels fastened together with grommets. Loops at the bottom of the panels secure platforms made of CNC-cut MDF scattered on a sea of sawed-off cardboard tubes, while the Tyvek panels (also laser-cut) are held in place with fashion snaps. The entire installation hangs from a tube frame of galvanized pipe clamped to the gallery's ceiling beams. Time constraints led to a few shortcuts. The students initially intended to develop a projection component, but in the end simply printed most of the two-dimensional images and placed them on the floor. They had also hoped to cover the entire Mylar net in Tyvek, but eventually limited themselves to the lowest rows only. Nevertheless, the project effectively demonstrates the architectural potential of surface-as-structure—in this case, a net weighing under 20 pounds that suspends over 500 pounds of weight. "The surface is a structural skin," said Szivos. "What's nice is that even though it's only attached on the outside, there are still interior spaces."

Tietz-Baccon Dials Down The Volume in a Textural Chicago Office

Fabrikator

Tietz-Baccon fabricated a 7-foot by 23-foot freestanding wall, and a 10-foot by 160-foot decorative wall for Enova's Chicago offices.

As more and more companies embrace open workspaces that support collaborative and impromptu group work, acoustics are of utmost importance to employee productivity. To craft sound-absorbing feature walls for the Chicago offices of financial firm Enova, Brininstool + Lynch turned to fabrication studio Tietz-Baccon. Their six-person facility in Long Island City, New York, makes bespoke solutions for a variety of design-minded clients who appreciate—and ultimately benefit from—the founders' architectural background: Erik Tietz and Andrew Baccon met as students at Harvard's Graduate School of Design. "On the fabrication end, we take nonstandard projects and make them achievable by relying heavily on our digital capabilities," Baccon said. "Brininstool + Lynch had a concept that was worked out very well and was looking for someone who could execute on a tight budget in a short period of time." According to Baccon, the architects came to the fabricators with a family of shapes and a way of aggregating them, which was then applied to different materials, helping Tietz-Baccon deliver finished projects very close to the firm's original requests. "There was good collaborative discussion, and a back-and-forth to tweak and bring the concept to realization. They didn't have to compromise their idea that much."
  • Fabricator Tietz-Baccon
  • Architect Brininstool + Lynch
  • Location Chicago
  • Date of Completion July 2012
  • Material 3/4-inch MDF, 3/4-inch Micore, aluminum laminate, aluminum
  • Process Rhino, CNC milling, water jet cutting, assembling with screws
A free-standing "stack" wall serves as a spatial divider that doubles for heavy-duty sound mitigation. Realized in Micore® mineral fiberboard, 3/4-inch strips of the porous and lightweight material were CNC-milled to form a 7-foot by 23-foot wall between a cafe area and workstations. Selected for its acoustical absorption, exceptionally light weight, and varying density availability, Micore® had an appealing tactile quality that agreed with the architects' design. "All the selected shapes are related and contribute to material efficiency," Baccon says. "We extrapolated [from that premise] to tweak the scale and amplitude of the surface but tried to remain true to their initial approach." The "fin" wall, the larger of Tietz-Baccon's contributions at 10 feet by 160 feet, also serves to soften noise from bouncing off the preexisting wall. Three-quarter-inch strips of MDF in dozens of individual sizes are installed as a series of sets to produce a unique rhythm. Raw material was juxtaposed against lacquered MDF at the bottom that alternates for textural variation as well as durability. Each "rib" can be removed to replace bulbs in the concealed lighting scheme or for necessary repairs, and the lacquer safeguards the MDF from task chair run-ins or related daily impacts. "The most interesting part of this was trying to use the material in a slightly different way without affecting the durability or lifespan of the project," said Baccon, referring to the unconventionally exposed edges. "There is a strong presence of other materials, for example bespoke concrete next to highly refined acrylic panels with backlighting, so it's the juxtaposition of the really refined next to the raw that helps us understand the materiality." The architects introduced their concept for the fin wall with 2D drawings. Tietz-Baccon modeled the third dimension in Rhino and realized the final product with a CNC router. Each rib fits within a registered slot on an aluminum laminate track, and is locked into place with a shelf plate at the bottom. The entire system is secured with a series of water jet–cut aluminum mounting fins screwed into the preexisting wall.