Posts tagged with "Cross-Laminated Timber (CLT)":

Placeholder Alt Text

As mass timber's popularity grows, the concrete industry goes on the offensive

Is wood dangerous? It’s one of the oldest, most sustainable building materials (if harvested correctly) and recent advances in cross-laminated timber (CLT) have made it possible to build taller, multifamily timber buildings, but local building codes are just beginning to catch up. Sure, any Girl Scout knows that you can’t start a fire without it, but it’s generally considered kosher: CLT boosters say that if contractors know how to work with the material, timber is just as safe as steel. Despite their widespread use, concrete industry groups strenuously object to the use of “combustible materials” in construction. One industry group has launched an email campaign to ostensibly make members of the AEC industry aware of (non–fire-treated) wood’s shortcomings. These emails are part of an ongoing battle between the wood, concrete and steel industries, a conflict which seems to have escalated in concert with the growing popularity of CLT and the introduction of the timber innovation act, which would provide government support to the development of mass timber technology. With ominous subject lines like “Georgia Bill Would Leave Savannah Exposed to Hurricane Threat” and “Flames Quickly Consume Combustible Denver Apartment Complex Under Construction,” the emails seem to sow doubt about the durability and safety of timber buildings. The five-story, 84-unit Denver building detailed in the latter missive was under construction when it was engulfed by fire. “Combustible materials have no place in mid-rise housing projects, regardless of whether they’re under construction or fully operational,” said Kevin Lawlor, spokesperson for Build with Strength, which initiated the campaign, in the email. “These buildings are effectively tinderboxes on steroids, and when a fire breaks out, they’re incredibly difficult to extinguish.” Build with Strength is a partnership convened by the National Ready Mixed Concrete Association. As their names suggest, both groups are unabashedly pro-noncombustible materials, concrete and steel included. Reached by phone, Lawlor said Build with Strength doesn’t have a beef with wood—it just wants to fulfill its mission of educating the AEC industry on the benefits of ready-mixed concrete and its use in low- to mid-rise buildings. Its members include architects, engineers, steel and concrete interests, political leaders, and even religious organizations. “It’s not a materials fight,” Lawlor said. “The goal is to promote safer construction in three- to seven-story buildings. The notices are not specifically designed to go out and attack any particular industry.”
Placeholder Alt Text

Seattle-based atelierjones creates one of the first all-CLT residences in the United States

Sixty-three trees, 67 cross-laminated timber (CLT) panels, and 12 days—that’s what it took for Seattle-based atelierjones to erect the firm’s 1,500-square-foot CLTHouse, one of the first all-CLT residences constructed in the United States. The three-sided home is built on a leftover 2,500-square-foot triangular lot in Seattle’s Elliot Bay neighborhood on the shores of Lake Washington, where architect Susan Jones launched her research house experiment back in 2015. The house’s blackened, shou-sugi-ban treated exterior panels contrast with the blonde, white-washed, and daylit-spaces within the home, which emanate from a three-level circulation core containing a staircase, wet walls, and concealed utilities. The rustic home is inspired by the Northwest’s ubiquitous log cabins and features exposed wood paneling inside and out in homage to this building type. The approach, according to Jones, seeks to project a sense of “living with nature in the city” and provides a productive example of the smaller-scale capabilities of emerging CLT technologies. The house is punctured by triangular, gable-shaped windows that infuse it with daylight. Combined with the gypsum, plastic-laminate, stainless steel, and quartz-lined interior surfaces, it provides an “immersive, visceral, and natural experience,” according to the architect. Constructed using CNC-milled, rapidly renewable, and sustainably harvested CSFI-certified spruce, pine, and fir panels made by Structurlam, the building is crafted to inspire a sense of naturalistic escape and relaxation. The home’s exposed knotty pine aesthetic is reflected in a pair of stylized second-floor screened window walls that mark a triangular notch carved into the structure. Here, two pairs of sliding glass doors along the ground floor open the dual-lobed plan to the outdoors. Dining and living room spaces swing around this interior corner, where on one side, a thin plywood partition separates the dining and kitchen spaces from one another. Behind the kitchen sits a short hallway that connects the building’s backdoor entrance—located below a cantilevered bedroom suite—with the stair core. On the floor above, a trio of bedrooms, two bathrooms, and a reading nook cap off the home’s living areas while a rooftop deck overlooks the entire neighborhood from a wooden perch. The pilot house was developed as a research prototype and required extra municipal approvals to account for building codes that had not yet incorporated mass timber structural systems. Though crafted from sustainable materials from the start, atelierjones went one step further and planted 800 trees in conjunction with the project to act as an additional carbon sink. The result, according to Jones, is simply “hypernatural.”
Placeholder Alt Text

Tallest timber and concrete tower in North America set to go up in Toronto

The University of Toronto is teaming up with Vancouver-based practice Patkau Architects and Toronto’s MacLennan Jaunkalns Miller Architects (MJMA) to build a 14-story timber and concrete tower, the tallest in North America. Cross-laminated timber (CLT) is taking on the role of structural core and envelope, with the only concrete portion being the existing foundation. According to Shane O'Neill of Patkau Architects, the new tower will “utilize conventional glulam timber floor slabs, in addition to glulam timber columns, beams, and cross-bracing members.” The entire CLT structure is wrapped in multi-angled glazed glass, with a series of skylights and tilted planes providing natural light to atriums and stairwells below. The tower will be built atop the University of Toronto’s Goldring Center, which was designed by Patkau Architects and MJMA in 2014 to support the mass of a significant structure atop it. According to the University of Toronto News, the tower was originally going to be built of steel and concrete. However, wood building incentives provided by Ontario’s Mass Timber Institute and the environmentally friendly qualities of timber construction convinced the school and the designers to opt for the natural material. The structure joins the growing list of timber towers and academic buildings cropping up globally, ranging from London’s 121-unit Dalston Lane to the University of Idaho’s under-construction basketball arena. Currently, Patkau Architects and MJMA are wrapping up the design phase, with the goal of beginning construction in late 2019.
Placeholder Alt Text

A London startup wants to bring Adjaye-designed housing to the masses

Catalog homes could soon be seeing a resurgence, as London-based startup Cube Haus has enlisted several big-name English architects to design modular, off-the-shelf homes for design lovers on a budget. Adjaye Associates, Skene Catling de la Pena, Carl Turner Architects, and furniture designer Faye Toogood have all signed on to design high-density housing that will infill “awkward” sites throughout London. London homeowners have the option to subdivide their property and build on the unused portions, resulting in awkwardly shaped plots. Cube Haus claims that its modular designs can be scaled to fit these unorthodox lots and infill areas naturally and that their homes will cost 10 to 15 percent less than a conventional model because of their off-site manufacturing. Each home will be framed from solid sheets of cross-laminated timber and moved into place at the construction site, then clad in sustainable materials. Cube Haus is also offering up its designs for consumers building in more traditional lots as well. Adjaye Associates is no stranger to residential housing in London, and their rectangular Cube Haus design closely resembles Adjaye’s 2007 Sunken House in Hackney. Excavated gardens in the home’s yard plays a central role in this scheme, as do tall windows and ample natural light. Everything else about the timber-clad home’s layout is up to the landowner, and all of the rooms have been designed for a plug-and-play approach. Carl Turner has brought two schemes to the table. The first is a two-story house with a flat courtyard area on the roof, which splits the upper level into two pitched volumes. Cube Haus notes that the pitch of the roof can be adjusted, rotated, or flattened out according to the client’s whims. The second model is single-story slab pierced with a square courtyard, with the home’s programming arranged around this space. Consumers have the choice of cladding their homes in opaque glass, zinc, charred timber, or dark brick. Skene Catling de la Peña engineered their scheme as a “building within a building,” designing a masonry-clad central column that serves as a fireplace, staircase, hot water heater, and storage space around which the rest of the rooms are organized. Homeowners have several options for how they can clad the shaft, from tile to marble–or it can be left undecorated, exposing the precast concrete structure below. The homes themselves will be malleable to the irregular sites, linked through their spacious rooms and ubiquitous views of the main column. Faye Toogood has offered up a simple scheme in two material palettes; one light and one dark. A central garden placed between two pitched peaks breaks up the rectilinear massing of the house, creating a form suitable for both the urban environment as well as the countryside. Cube Haus is the child of entrepreneurs Philip Bueno de Mesquita (himself an owner of an Adjaye-designed home in London) and Paul Tully. The company is already building, with two sites in Forest Gate, London under construction and others in pre-planning throughout the city. Cube Haus hopes that its three-bedroom homes will sell for anywhere from $880,000 to approximately $1 million.
Placeholder Alt Text

Michael Green Architecture brings mass timber tower to New Jersey

Half a million square feet of mass timber office space is coming to downtown Newark, New Jersey, thanks to international firm Michael Green Architecture (MGA) and New York–based developer Lotus Equity Group. Lotus has described the project as the largest timber office building in the United States, and the tower will anchor Riverfront Square, a massive 11.8-acre, mixed-use development in Newark’s Central Business District. The building itself will forgo the typical steel and concrete core, instead using cross-laminated timber (CLT) beams and panels, and rise from a concrete foundation. Most of the project’s space seems horizontally aligned, as the building is composed of three stepped volumes that top out with the 11-story tower. This makes sense, as mass timber high-rises are still a touchy regulatory topic; the Wall Street Journal notes that the tallest timber building previously approved in New Jersey was only six stories tall. While the core, slabs, and wall panels will all be made from wood, the facade of the building will likely be clad in brick, metal paneling, or more wood. The structural elements will remain exposed throughout the interior and create a warm, welcoming environment inside. Outdoors, employees will be able to make use of several roof decks and related amenities. “Good buildings are good neighbors and we envision a sustainable, efficient and architecturally-stunning future for Newark,” said Michael Green, founder and principal of Michael Green Architecture, in a press release sent to The Architect's Newspaper (AN). MGA is no stranger to timber construction, as 95 percent of the studio’s projects are in wood. Part of their commitment is driven by environmental concerns, as concrete and steel production accounts for 10 percent of greenhouse gas emissions worldwide. Conversely, timber buildings sequester carbon dioxide in the wood and can reduce a project’s environmental footprint. The development of Riverfront Square is being led a number of high-profile architecture firms, including TEN Arquitectos, Practice for Architecture and Urbanism, Minno & Wasko Architects and Planners, and MGA. Once completed, Riverfront Square should bring up to 2,000 residential apartments, 2 million square feet of Class A office space, 100,000 square feet of retail, 185,000 square feet of hotel space, 31 maker spaces, and a 30,000-square-foot arts and cultural area to downtown Newark. The drive to attract tech talent to Newark is likely motivated in part by Amazon’s search for a city to build their second headquarters in; Newark made the 20-city shortlist released last month, after promising $7 billion in tax incentives to the tech giant.
Placeholder Alt Text

IKD has pioneered hardwood cross-laminated timber

Thanks to a two-year, $250,000 Wood Innovations Grant from the United States Forest Service, and with further support from the National Hardwood Lumber Association, Indiana Hardwood Lumberman’s Association, and the Indiana Department of Natural Resources, IKD is currently working on an advancement that may completely change the cross-laminated timber (CLT) market. Currently, CLT is made primarily of softwoods, which have the advantage of being fast growing and inexpensive. IKD believes the future of CLT should also include hardwood, and now it just might. As a proof of concept, IKD has constructed a large installation, which stands as the first hardwood CLT structure in the United States. The project was built with an experimental CLT material made from low-value hardwood-sawn logs for Exhibit Columbus, the new architectural exhibition in the modernist mecca of Columbus, Indiana. A reference to the conversation pit in the Eero Saarinen–designed Miller House, the IKD’s Conversation Plinth is a multilevel occupiable installation in the plaza in front of the I.M. Pei–designed Cleo Rogers Memorial Library. The motivations behind using hardwood are two-fold. Currently, over 50 percent of the 80 million cubic feet of hardwood harvested in Indiana each year is used for low-value industrial products. By integrating this wood into the higher-value CLT, it raises the value of what is already Indiana’s largest cash crop. And from the perspective of designers and engineers, hardwood CLT provides the possibility of a more fire-resistant panel and a form-factor advantage. “We are currently exploring a number of applications that could have larger scale building applications,” IKD partner Yugon Kim said. “Since hardwood has superior mechanical properties, we believe we can achieve a panel that could be thinner to meet the same structural capacity of an equivalent softwood CLT panel.” The Conversation Plinth is not simply an exhibition piece for IKD. It is a test of the hardwood CLT the firm developed with SmartLam, the first CLT manufacturer in the United States. Over the months, the project will be subjected to the varied and sometimes-extreme weather of south-central Indiana, providing firsthand data that IKD and SmartLam can use to advance their research on the material. From the beating sun of late summer through the sleet, snow, and ice of winter, the project will be monitored for durability as well as aesthetic and structural changes. “We are closely observing the mixed-species panels and seeing how they react in the extreme temperature and moisture fluctuations so that we can continue to refine the species mix within the panel, the adhesion process, and the finish application and approach,” Kim explained. “It is really interesting to see how differently hardwood moves from softwood when the moisture content varies, and we are looking deeper at the fiber structures and unique characters of species themselves as well to create a superior CLT panel.” The project continues much of the timber research IKD has been doing, including its design for the Timber City at the National Building Museum in Washington, D.C., and work on timber modular waste units, a timber version of CMU made from timber waste that has won numerous awards. Resources Project Lead and Designer IKD CLT Fabrication SmartLam Timber Engineering Bensonwood Phase One Hardwood Testing Material Supplier Pike Lumber Company Phase Two Conversation Plinth Hardwood Material Supplier Koetter Woodworking General Contractor Taylor Brothers Construction Co. Softwood Material Supplier And Fabricator Sauter Timber
Placeholder Alt Text

Learning from Europe and Canada's timber industry

If the steady stream of newly announced mass wood projects is any indication, mass timber building technologies are poised to take the American construction and design industries by storm over the next few years. As products like cross-laminated timber (CLT), nail-laminated timber (NLT), glue-laminated timber (glulam), and dowel-laminated timber (DLT) begin to make their way into widespread use, designers, engineers, and builders alike are searching for the best—and sometimes, most extreme—applications for mass timber technologies. But rather than reinvent the wheel, American designers can look to experienced mass timber designers in Europe and Canada for key lessons as they begin to test the limits of these materials in the United States. European and Canadian architects and researchers have long been at the forefront of mass timber design, starting with early experiments in the 1970s. By the 1990s, researchers like Julius K. Natterer at the Federal Institute of Technology in Lausanne, Switzerland, were developing initial CLT prototypes. Natterer’s work has been buttressed by that of many others, including research performed at the Norwegian Institute of Wood Technology under Thomas Orskaug and experiments conducted at the Technical University of Munich under Stefan Winter. One key lesson European timber projects teach is that when it comes to structural systems, weight matters. On average, mass timber assemblies weigh between one-third and one-fifth as much as concrete structures, despite equivalent structural capacities. As a result, mass timber buildings are much lighter than concrete ones, a positive for building in tricky urban situations, for example—where underground rail yards, subway tunnels, and municipal utilities place limits on how heavy and tall buildings can be. London-based Waugh Thistleton Architects (WTA), for example, recently completed work on Dalston Lane, a 121-unit CLT midrise complex located above a tunnel serving the Eurostar train line in the city’s Hackney neighborhood. For the project, the architects worked with timber-engineering specialists Ramboll to develop a stepped tower cluster rising between five and ten stories tall. CLT panels are used for the external, party, and core walls of the building, as well as the stairs and the building’s floors. The variegated massing is due directly to the architect’s use of CLT construction, which resulted in a lighter building that allowed the designers to build taller without more extensive foundations. The resulting building, with its staggered massing, better maximizes daylight infiltration into apartment units. The added height allowed the architects to add 50 more units to the project than originally permitted, a testament to just how light CLT can be. Andrew Waugh of WTA said, “Timber buildings are just simpler, cheaper, and nicer [than concrete ones]. High-density urban housing should be built using mass timber.” Lighter mass timber buildings also perform better in seismic zones. Since the lighter buildings carry less inertia, the potential for catastrophic swaying goes down. The strategy was applied this year with the Brock Commons tower, an 18-story, 400-bed college dormitory designed by Vancouver-based Acton Ostry Architects for the University of British Columbia Point Grey campus. The tower is made up of a hybrid structural system that includes CLT floor slabs, glulam columns, steel connectors, and dual concrete cores. The concrete cores anchor the light mass wood structure in place, helping to counteract seismic and wind-generated forces. The 173-foot-tall structure is currently considered the tallest mass timber building in the world, and the construction is particularly multifaceted, utilizing a specifically fabricated set of interdependent building materials and finishes to meet structural and fire-safety regulations. The Brock Commons tower’s hybrid structural system brings to light another valuable lesson: that above certain heights—ten to twelve stories—the lightness of mass timber construction becomes a liability with regard to wind loads. The lack of physical mass at the highest parts of a prototypical timber tower results in increased deflection from wind loads. Ola Jonsson, partner architect at Swedish architecture firm C.F. Møller, recommended architects “go back to thinking about construction when designing mass timber structures,” as a way of rethinking approaches to dealing with difficult-to-manage structural conditions. He added, “It’s so early [in the adoption of mass timber technologies] that few really know how to do it well.” The architect said that with certain tall timber tower projects the office is working on, designers had to develop new massing strategies to limit wind loads. Jonsson continued, “Many engineers lack experience in mass timber, so architects have to become central figures in construction and design during this early phase of adoption.” The firm is currently developing over ten mass timber projects, an emerging body of work that came out of earlier mass timber competition entries developed by C.F. Møller that took the world by storm. C.F. Møller recently entered into a partnership with HSB Stockholm—Sweden’s largest housing association—to design a series of new mass timber housing towers, including the 34-story Västerbroplan tower designed with concrete cores and wraparound terraces. The tower’s columns and beams will consist of a blend of CLT and solid timber. The building’s terraces will come with integrated exterior curtains and will be fully enclosed by a steel superstructure containing glass panels. The tip of the building is designed to dematerialize as it steps back along two facades, creating a series of exposed terraces and planted areas. Like Brock Commons, Västerbroplan tower features a hybrid structural system that is “resource-effective,” according to Jonsson, meaning both lightweight and rigid. The firm is also at work on a 20-story bundled housing tower called Hagastaden for HSB Stockholm, this one designed as part of a new quarter of the city that will contain mixed uses and generous pedestrian areas. The tower features varied floor heights designed to accommodate divergent uses like student flats, penthouse apartments, and typical family-occupied units. Aside from the firm’s multiple mass timber projects, C.F. Møller is working as part of an interdisciplinary research team that is developing new strategies around mass timber towers rising 20 stories or more. The group—backed by SP Technical Research Institute of Sweden, Växjö Municipality, and Linnaeus University, among others—will investigate mass timber construction from a fire-safety, life cycle, and construction technology perspective. Regarding the research project, Jonsson explained, "Massive wood constructions give urban planners, architects, and designers great possibilities to develop innovative and sustainable architecture,” adding, "but a broader knowledge and more practical experience in the industry is needed." Another paradigm-shifting impact mass timber construction has had on European building methods relates directly to the construction process. Because mass timber elements are factory-produced to order, the relationship between engineer, builder, and architect is extremely integrated. Cory Scrivner, mass timber specialist with Canadian mass timber manufacturer Structurlam, said, “For us, it’s all about the 3-D model. [Digital modeling and coordination] are all done before we go into production in the factory: Everything has already been approved by the architect, engineer, and our team.” Scrivner explained further that the intense coordination was necessary, as “we are designing a building made from components that are accurate within one to two millimeters of the digital model.” The designers behind Brock Commons utilized Structurlam as the mass timber manufacturer for the project. The advanced level of project coordination and off-site fabrication meant that project was finished roughly four months ahead of schedule, with a time-lapse video on a project website showing construction crews erecting upward of two floors per day. The first story for the project was built from cast-in-place concrete, while the remaining 17 stories are built in mass wood. The structural system utilizes glulam columns, steel connectors, and a two-way spanning CLT flat-slab. The design creates a floor beam–free structure that could be erected start-to-finish in nine and a half weeks. The rapid-fire construction time line, however, comes at the expense of longer planning and design phases prior to any work boots hitting the job site, as the teams must become absolutely synced prior to fabrication. Waugh of WTA explained that often with timber buildings, the firm asks its clients to “give us more time now [in the planning stages of construction] and we’ll save you even more time on the back end.” Waugh added, “The better programmed the construction process, the faster and more accurately the buildings come out.” Waugh said that after erecting several mass timber structures, the firm had “gotten so much better at it” than when they first started. One area of improvement has been material usage, which decreased with each project as the structural capabilities of mass timber have been further explored, tested, and certified. The Dalston Station project mentioned earlier, for example, utilized about two-thirds as much timber as the firm’s first mass timber project erected a decade ago. Part of the reason for the improvements, Waugh and Jonsson agreed, results from designers’ greater awareness of and comfort with the construction process. “To design well in mass timber, you need an architect who wants to understand that the nature of [the architect] is one of a ‘master builder’ as well as one of a ‘master designer,’” Waugh explained. Since mass timber construction methodologies are based on kit-of-parts assembly systems of mass-produced panel types and structural elements, there has been increased interest among European and Canadian firms in building high-density mass timber housing. These experiments have positive implications for the many American cities burdened with housing shortages and long project-approval times. Waugh explained that WTA’s focus rests on expanding the abundance of available housing through mass timber construction. He said, “We design everything in our office now as if it was a mass timber project. Concrete projects are becoming more and more rare.” Several projects in the works, like Shigeru Ban’s recently proposed 19-story Terrace House in Vancouver, Michael Green Architecture’s 35-story Baobab building in Paris, and PLP Architecture’s 80-story addition to the Barbican housing estate in London, point toward a wider adoption of tall and supertall mass timber housing towers. With faster construction times and fabrication that can occur in tandem with permitting, mass timber has the potential to help cities add housing rapidly, safely, and efficiently. Waugh added, “Humanity is becoming more urban, so the principal job of an architect in the 21st century is to develop high-density urban housing. In an era of climate change, it behooves you [as a designer] to reduce the amount of carbon emitted. Again, for us, mass timber is a way to do that.”
Placeholder Alt Text

Our studio visit with Michael Green Architecture

Michael Green Architecture (MGA) is a leader in the design of mass timber structures. The firm, jointly based in Portland, Oregon, and British Columbia, Canada, has been a pioneer in mass timber construction since the early days of glulam. Now, as mass timber technologies proliferate and gain wider acceptance, MGA is poised to make the next great leap in mass timber construction: full-fledged mass timber automation and prefabrication. “All of our projects are made from wood,” Michael Green explained over telephone, before adding that 95 percent of the firm’s work is specifically built using mass timber. The approach is due mostly to preference, as Green is a trained millworker who began his career decades ago working for renowned architect César Pelli designing “big buildings in steel and concrete around the world.” Those whirlwind experiences left the architect starved for ways to reengage with natural materials and craft, so after returning to his native Canada, Green opened his own wood-focused office. Throughout the early mass timber era, the architect was among the first to consider its widespread use and architectural potential. Today, the office focuses on utilizing mass timber elements in a variety of building types—for example, when tight urban conditions call for compact and efficient structures. The firm also works with institutional clients seeking long-term facilities and “100-year” buildings, which mass timber can easily provide. Green sees working in mass timber as “an opportunity to insert a lot of passion” into building projects that work as explorations in industrial design and are planned with a keen understanding of how they will be put together. This industrialized construction process suits Green, who explained that construction remains the last “major industry left on Earth that is still craft-oriented,” meaning that every building is built essentially as a one-off, custom prototype with none of the cost-saving benefits of industrialized factory production. That’s where mass timber comes in—building components are produced to order in controlled factory settings, where weather, temperature, and other variables are tightly relegated. The firm is currently working with technology start-up Katerra, which is looking to utilize the potentials of mass timber to automate and integrate the construction process nationwide. Wood Innovation and Design Centre MGA recently completed work on the Wood Innovation and Design Centre in Prince George, British Columbia. At the time of its completion, the nearly 97-foot-tall, six-story structure was the tallest all-timber structure in the world. The lower three floors of the project contain facilities for students pursuing wood-focused engineering degrees while the upper floors house governmental and wood industry–related office spaces. The building is clad in an elaborate system of louvered wood shutters that are optimized by exposure to mitigate solar glare. Aside from the structure’s mechanical penthouse, there is no concrete used in the building. Instead, the “dry” structure integrates CLT floor panels, glulam columns and beams, and mass timber walls into a complex design that conceals electrical and plumbing services within its relatively thin floor panels. North Vancouver City Hall The renovation and expansion of a municipal City Hall structure in North Vancouver, British Columbia, is one of the firm’s earliest mass timber projects. The 36,000-square-foot renovation bridges a repurposed 1970s-era structure and an existing library building with a new double-height mass timber and glass atrium. The 220-foot-long space is topped with CLT roof joists propped up on large CLT columns. Where the atrium meets the existing offices, clerestory windows provide views between public and business areas. The exterior of the long and narrow addition is clad in charred wood—a material that also wraps the exterior surfaces of other building elements—creating a new and dramatic exterior courtyard. Empire State of Wood As part of MGA’s early mass wood experiments, the firm worked with Finnish wood and paper group Metsä Wood on their speculative wood initiative. For the project, the firm was tasked with redesigning an iconic steel structure using mass timber elements. Naturally, MGA chose to envision the Empire State building as a mass timber tower, replacing steel girders and beams with glulam structures joined by metal plates. With slight modifications to the existing tower’s structural design, MGA was able to pull off a mass timber replica that matched the Empire State Building’s height inch for inch. Réinventer Paris/Baobab Tower The firm’s Réinventer Paris project proposes a large-scale, 35-story mass timber tower complex that would span over Paris’s Peripherique highway belt. The innovative and speculative proposal attempts to explore a new model for high-density housing that encompasses a variety of functional uses—market-rate and social housing, a student-oriented hotel, and a bus depot—dispersed throughout a series of high- and midrise timber structures. The timber towers feature CLT columns that frame indoor-outdoor verandas, with lower buildings clad in wood louver assemblies.  
Placeholder Alt Text

The country’s tallest timber building wraps up in Portland

As the race heats up to demonstrate that timber is a viable alternative to concrete for mid and high-rise buildings, Portland, Oregon, has been leading the way in realizing mass timber projects. The latest to claim the country’s tallest timber building crown is Carbon12, an 85-foot tall mixed-use building in Portland, designed by PATH Architecture. Built with a mix of glulam beams and cross-laminated timber (CLT) surrounding a central steel core, the eight-story building was designed to have a minimal environmental impact and promote Oregon’s local timber industry. As downtown Portland addresses a growing demand for housing, timber projects constructed with prefabricated CLT panels cut off-site, like Carbon12, hold a speed advantage over traditional steel and concrete techniques. Carbon12 features a mix of 14 residential units, each with their own recessed balcony, as well as retail on the ground floor and a mechanized underground parking system. While the exterior is clad in vertically striated metal paneling that recalls timber grain, PATH chose to accentuate the natural materials of the interior spaces by leaving the wood columns, beams, and undersides of the CLT slabs exposed for a warmer feel. PATH’s focus on sustainability as a requirement in part drove their decision to use timber for Carbon12. Because locally grown timber can sequester more carbon dioxide than is used to grow and transport the wood, it often has a smaller carbon footprint in production than steel or concrete. Carbon12 will also feature solar panels on the roof. Although Carbon12 is currently the tallest timber building in the U.S., it won’t be for long. The 148-foot tall, 12-story Framework building, also in Portland, is shooting to take the title once it finishes in winter of 2018. Designed by LEVER Architecture and the Framework Project, Framework will feature a wood core as opposed to steel. Still, as timber buildings continue to push higher and higher, they may be paving the way for the eventual acceptance of timber as a mainstream urban construction material. Carbon12 is now fully complete and units are available on the market.
Placeholder Alt Text

2017 Best of Design Awards for New Materials

2017 Best of Design Award for New Materials: Indiana Hardwood Cross-Laminated Timber Project Designer: IKD Location: Columbus, Indiana The Indiana hardwood cross-laminated timber (HCLT) project is the first commercial pressing of HCLT and the first use of HCLT in a built project in the United States. IKD aspires to create a new timber product by upcycling low-value hardwood sawn logs that are extracted from Indiana forests. Indiana’s largest cash crop is hardwood, but over 55 percent of each log processed is of low value. The firm set out to demonstrate how low-value hardwood can be used to create high-value HCLT, which can then be used as the primary structure for buildings. This process has the potential to initiate a cascade of effects: positive job growth in rural forestry and manufacturing, hardwood lumber market expansion, forest land value increase, and improved forest management practices. HCLT offers numerous benefits over softwood, including superior mechanical properties, material volume savings, and increased fire resistance. “The use of hardwood in mass timber is appealing on many levels. Its added strength and durability over softwoods makes it ideal for exterior applications.” —Nathaniel Stanton, principal, Craft Engineer Studio (juror) CLT Fabricator: Smartlam Timber Engineers: Bensonwood General Contractor: Taylor Brothers Construction Hardwood Material Supplier: Koetter Woodworking Grant Funding: United State Forest Service Wood Innovation Grant
Placeholder Alt Text

2017 Best of Design Awards for Office & Retail

2017 Best of Design Award for Office & Retail: Albina Yard Architect: LEVER Architecture Location: Portland, Oregon

Albina Yard is the first building in the United States made from domestically fabricated cross-laminated timber (CLT). This new 16,000-square-foot speculative office building utilizes mass timber construction, with a glue-laminated timber frame and CLT panels manufactured and prefabricated in Riddle, Oregon. The project’s primary goal was to utilize domestic CLT in a market-rate office building that would pave the way for broader adoption of renewable mass timber construction technologies in Oregon and the United States. The design approach reflects a commitment to this sustainable technology by developing an architecture focused on economy and simplicity, material expression, and the careful resolution and integration of all building systems to foreground the beauty of the exposed Douglas fir structural frame.

“As a structural strategy, mass timber is very similar to a cast-in-place concrete structure in terms of layout and function of its individual elements. The main difference is the character and humaneness of the remaining spaces.  It is very well-suited for this type of use.” —Nathaniel Stanton, principal, Craft Engineer Studio (juror) General Contractor: Reworks Structural Engineer: KPFF Consulting Engineers CLT Supplier: DR Johnson Lumber CNC Routing: Cut My Timber   Honorable Mention Project: Cummins Indy Distribution Headquarters Architect: Deborah Berke Partners Location: Indianapolis, Indiana This new office building reinforces an active pedestrian experience that is connected to downtown Indianapolis and its parkland. The unusually slender floorplan and high ceilings provide abundant natural daylight for every space and minimize reliance on electricity. A high-performance “calibrated” facade and an integrated system of fins and shades limit heat gain and increase thermal comfort.   Honorable Mention Project: Zurich North America Headquarters Architect: Goettsch Partners Location: Schaumburg, Illinois Located on a 40-acre expressway site in suburban Chicago, the North American headquarters of the Swiss Zurich Insurance Group reflects the company’s global reach and commitment to sustainability. Composed of three primary “bars” that are offset and stacked, the arrangement creates unique spaces for collaboration, opens views of the surrounding landscape, optimizes solar orientation for amenities, and provides programmatic flexibility.
Placeholder Alt Text

Microsoft reveals renderings for its new Silicon Valley campus upgrade

Microsoft has gone big and broken ground on its new Silicon Valley headquarters, with a sustainability-minded plan to modernize its Mountain View, California outpost. The 32-acre campus might seem small when compared to the company’s sprawling, 500-acre flagship location in Redmond, Washington, but Microsoft’s pursuit of a net zero non-potable water certification under the Living Building Challenge will make them the first tech company to totally reuse non-potable water. The redevelopment plans come as WRNS Studio replaced SOM early last year as Microsoft’s designers of choice. The redevelopment is leaning hard on a green modernization, with Microsoft pursuing LEED Platinum certification for all of its new buildings, committing to the WELL Building standards for the interiors, and integrating cross-laminated timber (CLT) throughout all of the new buildings to cut material usage. In trying to meet their water-use reduction goals, and acknowledging California’s limited groundwater availability, the campus will feature rainwater catchments and an on-site wastewater treatment plant so that drinkable water can be recycled for other uses. Because the campus is next to Stevens Creek, the tech giant is also introducing a 4-acre, occupiable green roof solely planted with native species. Rooftop solar panels will also help cut the campus’s energy usage, while the buildings will let natural light in through their uniformly large windows. Not to be outdone by the main, Seattle-adjacent campus, the project will also include an underground parking garage topped by a soccer field and a new athletics facility, while returning the former parking lots to nature. Besides modernizing the office space of their 2,000 San Francisco Bay Area-employees, the new campus will feature a renovated dining hall, new theater, conference center, and a “Microsoft Technology Center.” Microsoft has provided a full fly-through video of their plans below. The new Mountain View campus plan increases the existing 515,000-square-foot campus to 643,000 square feet, and comes amidst the recent opening of Apple’s new space-aged campus nearby. Similarly, Microsoft's renovation of its main headquarters in Redmond, announced at the same time as its Silicon Valley campus, feels like a direct response to Amazon’s city-hopping HQ2 plans. Microsoft's Silicon Valley campus is on track to re-open sometime in 2019.