Posts tagged with "CNC":

Placeholder Alt Text

Boston Valley Brings a 100-Year-Old Dome into the Digital Age

Boston Valley Terra Cotta restored the Alberta Legislature Building's century-old dome using a combination of digital and traditional techniques.

Restoring a century-old terra cotta dome without blueprints would be a painstaking process in any conditions. Add long snowy winters and an aggressive freeze/thaw cycle, and things start to get really interesting. For their reconstruction of the Alberta Legislature Building dome, the craftsmen at Boston Valley Terra Cotta had a lot to think about, from developing a formula for a clay that would stand up to Edmonton’s swings in temperatures, to organizing just-in-time delivery of 18,841 components. Their answer? Technology. Thanks to an ongoing partnership with Omar Khan at the University at Buffalo’s School of Architecture and Planning, the Orchard Park, New York, firm’s employees are as comfortable with computers as they are with hand tools. On site in Edmonton, technicians took a 3D laser scan of the dome prior to disassembly. They also tagged specific terra cotta pieces to send to New York as samples. These pieces, which ranged from simple blocks to gargoyles and capitals, went straight to the in-house lab for scanning into Rhino. The drafting department combined the overall scan with the individual scans to create a total picture of the dome’s surface geometry and depth. The individual scans, in addition, were critical to making the approximately 508 unique molds employed on the project. To compensate for the eight percent shrinkage clay goes through during drying and firing, the craftsmen at Boston Valley used to have to perform a series of calculations before building a mold. “[Now we] take the scan data and increase by eight percent by simply doing a mouse click,” said Boston Valley national sales manager Bill Pottle. In some cases, the craftsmen converted the scan data into a tool path for the five-axis CNC machine used to make the molds. “We’re doing that more and more in some of our mold making. It also allows us to ensure that we’re recreating them to the most exacting tolerance and dimensions that we can,” said Pottle. The data from the 3D scans also helped the craftsmen replicate the dome’s complicated curvature. “Between the scanned pieces and the scan of the dome itself, we were able to figure out some very complex geometry where each of these individual pieces had the correct shape to them,” said Pottle.
  • Facade Manufacturer Boston Valley Terra Cotta
  • Architects Boston Valley Terra Cotta, Allan Merrick Jeffers, Richard Blakey
  • Location Edmonton, Alberta, Canada
  • Date of Completion November 2013
  • System terra cotta rain screen
For sustainability and durability, the designers at Boston Valley reconfigured the dome as a rain screen system, with terra cotta components attached to a stainless steel frame. But while the rain screen boosts environmental performance, it also demands incredible precision. Again, the 3D models proved invaluable. “The models allowed these tight tolerances. [We] could explode it and make sure everything was connected. It would have been impossible without that level of sophisticated software,” said president John Krouse. The Alberta Legislature Building dome restoration is the first major project on which Boston Valley has unleashed its full array of digital design tools. Krouse hopes its success—he estimates that the digital tools speeded fabrication by 200 percent—will send a message to designers interested in experimenting with terra cotta: “What we’re trying to say to the architecture and design community globally is don’t be afraid to start designing domes with complex geometry, because we’re equipped with all this technology. It doesn’t have to be a square box.”
Placeholder Alt Text

Public's Tree-Like Transit Shelters for UBC

An abstracted version of a street tree, a canopy of tessellated irregular polygons balances atop slim steel posts.

When Public: Architecture + Communication visited the site of the transit shelters the University of British Columbia had asked them to design, they found that something was missing. The main point of entry to the campus, University Boulevard is lined with trees—except where the bus shelters would go. “There was this language of gaps that we noticed,” said Public’s Christopher Sklar. The shelters themselves, they decided, should fill in the tree line. The designers were left with a question, articulated by Sklar: “How does it be a quiet piece but also something interesting and unusual that relates to its surroundings?” Beginning with the image of a tree’s branch structure, Public placed a wood canopy defined by a repeating pattern atop slim steel posts. As for the pattern itself, the designers considered a range of options, from Moorish patterns to simple geometric shapes. The trouble with a geometric pattern, said Sklar, is that it is “often a static thing. We looked at triangles; they’re just triangles. Add a side, it’s just a square.” But if you add one more side, you have a pentagon. And that is where things get interesting. The tessellation of irregular pentagons is surprisingly complicated, on both a mathematical and an aesthetic level. “The thing that we liked about the repeating pentagon is that it creates something that is repetitive, but it’s also something that’s fluid and dynamic,” said Sklar. “It doesn’t feel like it’s repeating when you’re actually in it. It’s kind of a flowing structure above you.” Public alternated between Rhino and Grasshopper, finding that it was easier to perfect a line drawing and plug it into Grasshopper than to allow Grasshopper to generate the tessellation. “I think it’s one of these things where it’s a new technology, people want to see what it can do, think it can help you generate forms,” said Sklar. “But it’s taking away the last thing we have left to us. We’re designers, we want to shape the thing.” The team built a full-scale model of two of the canopy’s cells to get a sense of their size, hoisting the cardboard shapes onto the ceiling pipes in their Vancouver studio.
  • Fabricator Szolid, Structurlam, Bosmon Steelworks, Columbia Glazing Systems, Dancin Timber Works
  • Designers Public: Architecture + Communication
  • Location Vancouver, British Columbia
  • Date of Completion September 2012
  • Material Glulam, steel, concrete, glass
  • Process Rhino, Grasshopper, modeling, CNC milling, welding, concrete casting
Structurlam fabricated the Glulam canopy on a Hundegger CNC machine. The steel supports were manually welded at Bosmon Steelworks. The shelter’s concrete benches were also fabricated by hand, at Szolyd. This was a surprise for Sklar, who had delivered a Rhino model of the bench design to the fabricators. But Szolyd said the design, which incorporates a series of fine edges as built-in skate-stops, would require as much work to prep the CNC machine as it would to build a mold manually—so they hired a carpenter to do just that. “Sometimes you do to all this work to make a digital model, and they’re like, ‘no, we’re just going to build it by hand,’” said Sklar. The shelters were assembled by Dan Georzen at Dancin Timber Works. Besides the wood canopy itself, the most dynamic component of the transit shelter is its surround, built of bronze-tinted glass from Columbia Glazing Systems. The tint serves three purposes. First, it cuts down on UV exposure. Second, it will give the canopy a warm cast even as the wood weathers. Finally, it creates a subtle reveal for passers-by. “When you’re approaching the shelter you see it in front of you, you can’t see through the bronze-tinted thing,” said Sklar. “Then when you get under it, it reveals itself to you. As you approach, it reflects its surroundings from all sides; then you get underneath and: ‘oh wow, look at that.’”
Placeholder Alt Text

At SCI-Arc, the Magic is Inside the Box; Eric Owen Moss Explains Why

“Actually, the box isn’t magic, so don’t be disappointed you didn’t get ahold of Merlin the Magician,” Eric Owen Moss said at the start of a recent interview. Moss, director of the Southern California Institute of Architecture (SCI-Arc), was referring to the school’s new digital fabrication lab. Dubbed the Magic Box, the two-story, prefabricated steel structure will be constructed at the south end of the SCI-Arc building. But Moss didn’t want to focus on the laboratory itself, which was designed by several architects affiliated with SCI-Arc (including Moss's own firm). Instead, he said, “the game is, what’s inside is magic. It’s not so much the object, but what the object contains." The Magic Box will house state-of-the-art tools for digital prototyping and fabrication, including CNC machines and 3D printers. Together with a remade Analog Fabrication Shop and the existing Robotics Lab, the Magic Box will be a key component of the school’s new RAD (Robot House, Analog Shop, and Digital Fabrication Lab) Center. According to Moss, the Center is designed to teach students how to interrogate the technologies and materials they encounter. “SCI-Arc is not interested in producing people who can just go into an office and use digital tools,” he explained. “We’re interesting in producing students who have a critical and intellectual perspective on this.” As an example of the kind of creative discovery he expects will take place inside the Magic Box, Moss cited the school’s Robot House, the 1,000-square-foot laboratory comprising a five-robot workroom and a Simulation Lab. “Robots are usually used in [a chronological sequence], but we don’t use them that way,” Moss said. “The robots evolve: as the program changes, the robots start to do something else.” He also pointed to the history of CATIA, visualization software originally marketed to aerospace engineers but now in widespread use among architects. “A lot of these [digital] tools have been made by other characters that may have different motives,” Moss explained. “We want to make sure that the imaginative motive is introduced as part of the [architect’s] education.” In the end, Moss said, the new workspace at SCI-Arc is named the Magic Box to reflect the optimistic spirit in which it is being introduced. That storyline will begin next spring, when construction on the Magic Box starts. The 4,000-square-foot space is expected to be ready for students at the opening of the 2014-15 school year.
Placeholder Alt Text

MAD Museum gets Out of Hand

A cross-section of postdigital design work illustrates the role of parametrics in the built environment.

Spawned from his 2011 show on Patrick Jouin, Museum of Arts & Design (MAD) curator Ronald Labaco conceived Out of Hand as a more comprehensive show that clarified the role of digital design, from its capabilities to its significance in our daily lives. “People just didn’t get it,” said Labaco of Jouin’s 2011 MAD show. “Unless you’re immersed in it, it can be hard to understand so I thought if we showed something like this in the galleries again, we needed to provide information that can be digested more clearly.” Staged across three floors of the museum, with two exterior sculptures, Labaco said the show is an important program for MAD among other New York art institutions like MoMA, Cooper Hewitt, and the New Museum. The goal to raise awareness of 3D printing is timely, by chance. “Paolo Antonelli’s Design and the Elastic Mind, and two shows from Material Connection were complements to my show for the uninitiated,” Labaco explained. Out of Hand’s broad scope includes digital designing and fabrication processes like CNC milling, digital weaving and knitting, laser cutting, and 3D printing to display how these technologies influence the built environment. “It’s a historical look at the last 8 years and works from as early as 2005 are incorporated because, in my mind, that was when the major shift between rapid prototyping and 3D printing really occurred,” said Labaco.
  • Curator Ronald Labaco
  • Location Museum of Arts & Design, New York
  • Date October 2013– July 2014
  • Materials ceramic, concrete, polyurethane, resin, PVC, metal, gypsum, wax, paper, wood, jacquard
  • Process water jet cutting, laser cutting, laser sintering, 3D printing, digital weaving
Organized in six themes, a cross-section of traditional methods and new design capabilities are illustrated by architects crafting art, artists doing design, and photographers making sculpture. Approximately half a dozen pieces were commissioned for the show while others were an extension of existing works: For example, a chair by Jan Habraken evolved into the more comprehensive Charigenics. Placards for each piece call out production methods, from 3D printing (10 materials are featured) to digital knitting, underscoring the multi-step creation process to make the point that digital design isn’t only press-and-print. And many of the show’s pieces are a combination of old-world handcrafting and newer digital geometries and computations. Pieces like Rapid Racer, Bosch’s 3D-printed vehicle fabricated over 10 days and weighing just 29 pounds, and Zaha Hadid’s Liquid Glacial "Smoke", a coffee table CNC-milled from polished plexiglass, illustrate the functional role of digital design. Data input is actively incorporated through two interactive pieces from Francios Brument, for which he developed his own scripting, as well as a Shapeways workshop that is open to the public. Traditional forms are realized by new methods in Nendo’s 3D-printed paper boxes that are lacquered with traditional urushi for a ringed faux bois. Other featured artists, architects, and designers include Richard DuPont, Greg Lynn, Anish Kapoor, Marc Newson, Frank Stella, Daniel Libeskind, and Maya Lin. Just as dynamic as the digital disciplines themselves, new pieces are being added throughout the show’s run. Look for a new piece from Iris Van Herpen by mid-November. Out of Hand will remain on view through July 6, 2014.
Placeholder Alt Text

The Twisting Tour Total

Barkow Leibinger designs a precast folded facade that puts a gentle spin on surrounding traditional architecture.

On one of the last urban tracts of available land in Berlin, Germany, local architecture firm Barkow Leibinger recently completed an 18-story tower, Tour Total. Highly visible from a neighboring train station, and the first completed project in the site’s 40-acre master plan, the tower has a raster facade with precast concrete panels that were geometrically computed in Rhino to create twisting inflections, conveying a sense of movement around the building’s four sides. As a load-bearing facade, 40 percent of the surface is closed, and 60 percent is triple-glazed, with every other window operable. In addition to integrated energy management strategies—the first building tenant is French energy company Total—partner Frank Barkow said the firm’s extensive background in digital fabrication and research allowed the efficient development of the dynamic facade. Drawing from the surrounding, traditionally quadrilinear brick facades of the 1920s and 30s, the tower’s lines are imbued with an engrained depth that twists optically to read differently in direct sun or cloudy weather, without actually moving.
  • Fabricator Dressler
  • Designers Barkow Leibinger
  • Location Berlin
  • Date of Completion October 2012
  • Material Precast concrete, site-cast concrete floor slabs, triple glazing, Isokorb connections, operable aluminum window frames, retractable sun louvers
  • Process Rhino, AutoCAD, CNC milling, concrete pouring, acid washing
The design team drew a series of T-shaped elements to create the exterior components, and K-modules for structural stability. “The folding K modules produce an in-and-out for continual diagonals that wrap around the corners,” Barkow told AN. Interior and exterior concrete components sandwich around glazing, windows, and insulation. To test the design, 3D models were fabricated on a CNC router. Many of the profiles in the facade assembly are repeated many times, though 160 are unique. Each cast could be used at least half a dozen times before another had to be fabricated. German fabricator Dressler milled plywood molds and white concrete was poured over an affixed release surface. Once solidified, each section was finished with an acid wash to expose the aggregate and transported to the building site. Steel pins, embedded within the structure’s poured concrete floors, connect the layers of the facade sandwich. Barkow and the concrete contractor had several discussions about eliminating an interior precast layer in combination with an Isokorb thermal break to mitigate expansion but, in the end, opted for the original design. “It’s the next technological step, for the facade to work like an exoskeleton, but we’re a few years away from that,” Barkow said. Despite budgetary and time restrictions, the LEED Gold-equivalent Tour Total was realized successfully, in part, through parametric design and advanced fabrication methods. “We’re taking advantage of northern Germany’s extremely proficient building culture and working with our fabricators here and in Switzerland as early as possible in the design process,” said Barkow. “There’s a lot of back and forth where we push them away from conservancy and they push us towards efficiency.”
Placeholder Alt Text

W Seattle Hotel’s Parametric Pilings

LIT Workshop fabricated sleek lodge poles to complement the city’s heritage.

When Starwood Properties began to reimagine a new living room concept for the W Seattle, the existing first floor space featured a disconnected bar, restaurant, and lounge area, much like the traditional layout of a formal home. Portland, Oregon–based architecture firm Skylab Architecture was charged with knocking down the visual barriers for an open floor plan that resembled a more modern, casual living space. Several preexisting columns could not be removed for structural reasons, so a truly open plan had to be amended. “In some ways you could see them as a negative, or they could be seen as a positive,” Skylab principal Brent Grubb told AN. “We try to turn those perceived negatives into a design element and make it unique.” Researching the city’s cultural and maritime history inspired the architecture team to combine the water-worn patina of shore-front pilings with the physical mass of wooden totem poles. The solution was a parametrically streamlined form that was fabricated in modular sections for swift installation.
  • Fabricator LIT Workshop
  • Designers Skylab Architecture
  • Location Seattle
  • Date of Completion April 2012
  • Material furniture grade plywood, kerfed core substrate, walnut veneer, paint, clear coat sealer, concealed proprietary fastening system
  • Process Rhino, SolidWorks, MasterCam, CNC Milling, hanging, stacking
The team designed seven different variations on a crescent shape that rotates and stacks to create unique profiles: round, recessed, and beaked. Depending on the stacking pattern, the lodge poles provide downlighting or uplighting, or exist as a solid mass. Because the sections had to accommodate wiring, Skylab worked with their local fabricator, LIT Workshop, to find a solution for an open interior to the column casing that relayed the weight and size of solid wood poles. Similar to a boat’s construction, furniture-grade plywood was CNC milled from an interior radius to form ribs. The ribs were then wrapped with a kerfed core substrate, over which a walnut veneer was applied. Due to the irregular curves of each piece geometrically even cutouts would not suffice. LIT modeled at least two article parts in SolidWorks as a visual reference that was refined according to feedback from both the architects and the fabricator. Each section was clear coated and embellished with a nine-coat paint process to mimic the ombre appearance of waterlogged pier pilings. According to Jon Hoppman, Director of Manufacturing for LIT Workshop, CNC routers were instrumental in fabricating the framework of the lodge pole sections. “Due to the size and scale of the elements, as well as the process of installation, the sections were required to be produced and repeated under tight tolerances,” he explained. An extensive period of research, design, and prototyping—that included the development of a proprietary fastening system—resulted in an installation period of approximately one week. The resulting columns blend into the W Seattle’s surroundings like bespoke furniture components, at a fraction of the time and cost of traditional crafting techniques. “At once, they’re heavy and permanent, but also light and eroding,” said Skylab’s Grubb. “Technology tells us you can really do something customized with an economy.”
Placeholder Alt Text

Situ Fabrication Cracks Google's Code

Brought to you with support from:
Fabrikator
 

HLW’s binary design for Google’s New York office supports the company’s product offerings.

Google is renowned in design circles for its unique offices around the globe, and the main lobby of the Internet search giant’s New York City office is no exception. Architecture firm HLW took its inspiration for the design of the space from Google’s Code of Conduct. The architects rendered the document’s stipulations in binary code, and applied those perforations on a series of 27, 12-foot-tall triangulated aluminum wall panels. This digital-age design feature is a nod to Google’s domain as well as to the process by which the panels themselves were created. Brooklyn-based Situ Fabrication, the newly established fabrication arm of Situ Studio, worked with HLW to achieve a monolithic appearance across each of the 27 panels. Since the design called for “folded-looking planes,” Situ Fabrication opted to work with 1/8-inch-thick aluminum composite material (ACM) for ease of manipulation and the clean edges that the material would produce when processed on wood working machines. To reinforce the ACM sheets, Situ designed and fabricated a triangulated frame from welded aluminum tubing, resulting in a 2-inch-thick panel section.
  • Fabricators Situ Fabrication
  • Designers HLW
  • Location New York
  • Date of Completion January 2013
  • Material ACM (Aluminum Composite Material), custom aluminum fastening system, aluminum trim, flathead screws, adhesive, black paint
  • Process Rhino, AutoCAD, SketchUp, CNC milling, welding, folding
The design and fabrication process involved substantial file sharing as Situ tweaked the geometry of HLW’s designs in Rhino. Then, a rendered view of an adjusted thickness would be sent back to HLW in SketchUp to support the designers’ parameters. “There was a lot of back and forth between our design engineering and fabrication and what the architect provided to us,” attested Basar Girit, a partner at Situ Studio. “We speak the language of the architect, as well as the contractor, and it makes for a smooth process because the architect doesn’t have to fully resolve the design and translate to the contractors.” Situ calculated optimal distances between perforations so as not to compromise the integrity of the 1/8-inch ACM. Working from an image file, the pattern of perforations was laid out on each panel to avoid the interior frame. A 3-axis CNC router punched out mirror images of the pattern on each of the ACM sheets, which were then bent around the frames. This method quickly produced a panel with an identical pattern on the front and back, and seamless corners. Situ coated the interior of each panel with black paint. Backlit by linear lighting along the lobby’s wall, the panels produce a glittering effect as visitors walk through the space. Situ also helped flesh out installation methods with a custom mounting detail on the ceiling and floor, received in a wall niche. A welded aluminum tab runs the length of each panel, like a vertical fin, that bolts in at an angle at two locations. Flat head screws secure the system in place, and the attachments are concealed with aluminum strips, much like traditional trim.
Placeholder Alt Text

Disheveled Geometry

Brought to you with support from:
Fabrikator
 

Students use parametric design to fashion a porous architectural screen that draws from contemporary marble sculpture.

In the third edition of Mark Foster Gage’s Disheveled Geometries seminar at the Yale School of Architecture, students Mary Burr and Katie Stranix began their exploration of extreme surface textures with marble. Inspired by the sculptural work of Tara Donovan and Elizabeth Turk, the student duo set out to design a delicate yet porous screen that transformed a two dimensional panel into a rhythmic and dynamic 3D structure. According to Stranix, the first design emerged as an aggregation of several different parts and wasn’t intended for parametric processes. “We wanted to maintain delicacy in our design but add porosity,” she told AN, referencing Herzog & de Meuron’s ground level screen at 40 Bond Street in Manhattan. Working in Maya, the students added elliptical apertures in varying diameters to transform the two-dimensional form in a wavy, 3D screen that departed significantly from a standard panel format.
  • Fabricators Mary Burr, Katie Stranix
  • Designers Mary Burr, Katie Stranix
  • Location New Haven, Connecticut
  • Date of Completion May 2013
  • Material Obomodulan high density foam, automotive primer and paint
  • Process Maya, Mudbox, Zbrush, Powermill, KUKA robot, drilling, hand sanding
To add texture to the screen, Stranix and Burr imported their work to Mudbox, but found the renderings ineffective. Though the mockups weren’t to scale, extrapolations of the desired micro-texture resulted in a polygon count “somewhere in the millions,” Stranix said. “If we were going to get it fabricated on the real material, the count would have to be under 12,000.” The same micro-texturing attempts were made in Zbrush—the program that rendered the wrinkles on King Kong’s face in Peter Jackson’s 2005 remake—but that also produced the same dissatisfactory outcome due to their lack of access to a very small mill. Going back to the drawing board, Burr and Stranix decided to try using a KUKA robot CNC router to apply the desired texture that would appear naturally from veining in marble. “Marble was so prevalent for so many years, and now it’s nearly obsolete,” Burr said. “Architectural materials are desired for their smoothness, so building up that curvature was a rethinking of that.” Taking advantage of the KUKA’s ability to execute undercuts, texture was added with a broader jump of the drill bit across a 20-inch-by-40-inch panel of Obomodulan, a high-density foam. Working in Powermill, the students designed a path to carve the elliptical grooves but also tolerated machine-induced variations. With this method, the process generated deep variations in texture. The highest point measured about 6 inches, whereas the lowest point was only 2 inches. The final finishing was achieved by approximately 14 hours of hand sanding. In addition, any crevices the robot couldn’t reach were drilled out by Burr and Stranix. “Technically, it all could have been done robotically, but we didn’t have an end mill that small in diameter,” Stranix said. A smooth seal was applied with automotive primer and paint.
Placeholder Alt Text

Ceilings Plus Soars in Texas

Brought to you with support from:
Fabrikator
 

Gensler’s design at the University of Houston is realized in a cloud-inspired, sound-absorptive ceiling solution.

Gensler and Ceilings Plus have brought a touch of the Big Apple to the University of Houston’s recently completed Quiet Hall in the Classroom and Business Building. Gensler drew its design inspiration for a ceiling in the new building from the New York Central Library’s Rose Reading Room. The firm hired the California-based Ceilings Plus to translate its interpretation of this classical interior, which includes perforations and geometric folds, into an affordable, buildable, and installable ceiling solution. Ceilings Plus used digital software to marry the design architect’s vision with a workable model that offered minimal joint tolerances and maintained compatibility with HVAC systems. “Since the architect was interested in doing something completely new, it was important to realize that process together,” said Michael Chusid, who works in marketing and business development for Ceilings Plus. Gensler produced three conceptual renderings in Revit, then turned them over to project engineer Robert Wochner, who developed sound-absorptive perforations and a suspension system that could support the various angles of the Quiet Hall’s multi-planar ceiling.
  • Fabricators Ceilings Plus
  • Designers Gensler
  • Location Houston, Texas
  • Date of Completion October 2012
  • Material Illusions ceiling system, sheet aluminum, Saranté PVC-free laminate, non-woven acoustical fabric, recycled cotton batt, blue felt, modified tee-bar system, torsion spring clips
  • Process AutoCAD, Revit, SolidWorks, CNC milling, punch pressing, cutting, folding
Wochner used AutoCAD to reconcile Gensler’s rendering, which depicted a cloud of perforations across the ceiling for sound absorption. Acoustically there was an ineffective number of apertures, so Wochner filled in the original design with smaller, carefully angled perforations. By leaving an ample amount of space between the dropped ceiling and the planchement, the perforations are able to absorb vibrations in an efficient and lightweight system. Nearly 50 configurations were considered before arriving at a final design, which was modeled in SolidWorks. Ceilings Plus fabricated the panels using stock products and a CNC router. The architect’s chose the company’s PVC-free Saranté laminate in a henna-toned wood finish, which is affixed to an aluminum sheet. A punch press knocked out the perforations, revealing a blue felt backing. Despite the ceiling’s complex appearance, Ceilings Plus developed a suspension system based on a conventional T-bar system, making it easy to install. Since the ceiling is not flat, attachment points were individually set to hang each of the 280 panels from between six and eight torsion springs. “With this firm pressure downward, you can extract the panel and lower it out of place to gain access to the ceiling cavity to maintain the HVAC system, ductwork, and other mechanicals,” said Chusid. Custom-fabricated brackets help support the unique angles. Ceilings Plus deployed several expert installers to assist the installation process. “Any time there’s a slope on the ceiling and it interfaces with something round, like a column, it goes from a circle to an ellipse,” said Wochner. “Though we have precise information about the field location, it’s not uncommon to make adjustments on site.”  
Placeholder Alt Text

The Cartesian Collection: A 17th Century Design Reboot

Fabrikator

An ambitious designer used Rhino to design and fabricate 20 variations on a chair in four months.

For a designer aiming to streamline the gap between design and manufacturing, parametric modeling tools are a natural solution. LA-based Alexander Purcell Rodrigues found a place to work in just such a way at the Neal Feay Company (NF), a 60-year old fabrication studio in Santa Barbara, California, that is known for its exceptional metalworking. Together, the designer and the fabrication studio created the Cartesian Collection of chairs, aptly named for the analytic geometry that helped facilitate close to 20 design variations on the same aluminum frame in just under four months. “Not only were we pushing the boundaries of aluminum fabrication, the aim was to simultaneously create a lean manufacturing process,” said Rodrigues. Using Rhino with a Grasshopper plugin, Rodrigues developed a design for a chair that weaves together the simplicity of Western design with the complex ornamentation of traditional Eastern aesthetics. While the lines of the chair are clean and smooth, intricate embellishments on the back traverse multiple planes and angles, all on a shrunken scale. The time savings involved in designing with Rhino allowed the creation of another 19 variations on the theme.
  • Fabricators Neal Feay Company
  • Designers Alexander Purcell Rodrigues
  • Location California
  • Date of Completion May 2013
  • Material aluminum, ombré anodized finish, screws, oak, walnut, upholstery
  • Process Rhino, Grasshopper, SolidWorks, Mastercam, CNC milling
Rather than working with large billets of aluminum, Rodrigues and NF’s Alex Rasmussen opted to fabricate the chair from ½-inch stock, with an option for wooden legs or an upholstered seat. “The most difficult thing was the back rest because it required the most unconventional process,” said Rasmussen. “Once it was bent into a the basic form, the back was put into a four-axis machine that works in an X, Y, Z, and rotational axis to apply texture.” An anodized finish, which transitions between two colors for an ombré effect, adds to the bespoke appearance. Working collaboratively to solve hiccups in the fabrication process was a key component to the success of the project, and experimenting with tool paths helped create new patterns. Manipulating the original design in Grasshopper accounted for even minute deflections in the real-world fabrication scenario. “With this formula, you can play with variables that go in a hundred directions and multiply quickly,” Rodrigues said of the freedom of working in the program. “The world is your oyster in Grasshopper.” The team worked with aluminum for the frame of the chairs, a material choice that was made in part due to the fact that NF specializes in the material. In addition, the lightweight metal allowed a greater degree of accuracy than injection or press molding. “You can get all the screw caps and holes so exact with a precision of perfection you can’t recreate in other materials,” said Rodrigues. “And experimenting with the ombré anodized finish, NF pushed the boundaries very well, for something so thin and elegant.”
Placeholder Alt Text

In 3D-Printed Sugar

Fabrikator

A team of SCI-Arc–trained architects establish a sweet set up in Southern California.

Liz and Kyle Von Hasseln wanted to bake a birthday cake for a friend but, unfortunately, their rented apartment didn't have an oven. Not to be deterred, the Southern California Institute of Architecture (SCI-Arc) alumni hit upon a solution that would leave most bakers scratching their heads: They decided to 3D print one. Earlier that year, the couple had been awarded the school's inaugural Gehry Prize for their work on Phantom Geometry, a 5-axis fabrication study of UV-cured resin within a shallow vat system that responded to real-time feed back and feed-forward mechanisms. "In our graduate work, we were really interested in the way free form fabrication would influence architecture," Kyle recently told AN. "We thought a lot about the potential for the intersection of culture and technology that would be accessible to the public, so printing sugar was that."
  • Fabricators Sugar Lab
  • Designers Liz and Kyle Von Hasseln
  • Location Los Angeles
  • Date of Completion 2012
  • Material sugar
  • Process Maya, 3D printing
The Von Hasselns began working on a combination of SCI-Arc machinery and printers they built themselves. The initial ambition to 3D-print the entire cake was scaled-back to 3D printing just a sparkling cake topper made only from sugar, a process that Liz likened to a micro architectural challenge. As with any material, working with sugar presented inherent propensities and limitations. However, Liz said the process of working with food had its own distinct challenges. "Because it's a food object, we've found it becomes important to consider those inherent characteristics," Liz said. "People have expectations about what food looks, tastes, and feels like, and its really important to hit those notes, otherwise you have a cool design that might not look like dessert." Once the designers embraced the inherent qualities of the material, they developed a proprietary 3D-printing process capable of fusing sugar crystals together without deforming or discoloring them. The finished product is as white and sparkling as a sugar cube. Though they missed the birthday by a long shot, the end result spelled their friend's name in a cursive scrawl made entirely from sugar. Sugar Lab, the Von Hasseln's company, has yet to build an entire town out of sugar like the utopian village brought to life by Richard Brautigan in his novel In Watermelon Sugar, but the couple has received hundreds of inquiries from around the world. They are also excited about the role of the designer in the 3D printing revolution. "We think what will move the field forward in the future is not solely additional technological enhancement, but how artists, architects, and designers utilize those capabilities," Liz said. "A 3D printer is a tool and what comes of skilled artisans wielding that tool is what will make the technology resonate with people, and make it culturally relevant."
Placeholder Alt Text

MammaFotogramma Brings Motion to Plywood

Fabrikator

MammaFotogramma designed a plywood and high-performance mesh composite that is scored on a CNC mill to facilitate textile-like movement.

WoodSkin is a flexible wood surfacing material developed by interdisciplinary design studio MammaFotogramma. The concept is an exploration of movement developed for Autoprogettazione 2.0, an open-source design competition from 2012 that originated in the firm's work in stop motion animation. "We're still in animation production, but what we do is all about movement," said studio founder Giulio Masotti. MammaFotogramma’s current work includes architecture and design projects as well as a lab that evolved naturally as projects came in, where collaborators develop new techniques for hybridized exploration. "Project after project, we saw we were applying movement everywhere, not because it was a need but because it's how we work and what we explore," said Masotti. Later in 2012, after the competition, the composite wood material was first fabricated as an interior finish for the lobby of Allez Up, an indoor rock-climbing facility in Montreal. "When we figured out what we wanted to do, we knew we needed something different," said Masotti. "We needed a system, not just a project solution." The goal was to design a visually appealing material that could be used in a static way with the possibility for movement.
  • Fabricators MammaFotogramma
  • Designers MammaFotogramma
  • Location Montreal
  • Date of Completion 2013
  • Material plywood, nylon, polymer composite, custom adhesive
  • Process CNC mill
To realize this, the studio devised a flexible wood composite by sandwiching Russian plywood sheets around a high-performance nylon and a polymer composite mesh, joined by a custom mix of adhesives. The mesh acts to free the plywood from its flat state and facilitate movement. The three-part compression process also strengthens the adhesive bonds and supports the skin's movements. For the Allez Up lobby desk, 15,000 triangular tiles were scored into the composite's surface via CNC mill to form a boulder-like organic shape. What began as an "analog process" of sketching and handcrafting has been adapted for parametric tools because of software’s capabilities to adapt to changes throughout the design development process. Though the design capabilities are quite extensive, fabrication methods can still be quite expensive. "The processes of computer aided design can bring you far, but when it comes time to build, the technology is behind and the process becomes complicated and expensive." To start bridging this gap, MammaFotogramma is developing a custom plugin for Rhino, with the hope that the process of fabricating WoodSkin could be replicated in multiple materials. "The skin is made of wood but the process allowed us to collaborate with other companies that can apply their solid materials," said Masotti. "These kinds of skins will hopefully be applied to existing materials for different finishes, such as fire and water proofing." WoodSkin prototypes were exhibited at Fuorisalone in Milan. A recent collaboration with Italian fabricator Biffi Carpentry has opened the WoodSkin process to the possibility of more commercial projects, as well as innovative indoor/outdoor structures like cover systems or flexible walls. "You can transform the shape you have in the skin and you can dictate the quality, thickness, and pattern for something totally unique," said Masotti.