Posts tagged with "BIM":

Placeholder Alt Text

Architects launch startup to attach more context to BIM models

The Lincoln, Nebraska, firm BVH Architecture had a problem. It was awarded the chance to help overhaul the HVAC system at the Bertram Goodhue–designed Nebraska State Capitol, but even with the high-precision BIM model it created over 800 hours, there was no good way to attach additional information—like current status, preservation-worthiness, or any of their 40,000-plus photos and nearly 60 data points needed to map the many elements in each of the 1,300 rooms of the building. It was, as Zach Soflin, an architect and former associate at BVH, described it, “overwhelming.” To tackle this immense issue, the firm created a new software suite for internal use, which after a rebuild from the ground up is being released for any architect, designer, or building manager to add to their own arsenal. Called Layer, the cloud-based app, of which Soflin is COO, runs in-browser or natively on mobile devices and Windows and Mac computers and integrates directly with Revit, to allow the addition of all sorts of notes, imagery, and other data to the workflow. “Layer is a customizable platform,” Soflin explained, “meaning that the data within our platform is able to adapt to any project type, whether it's an existing building or new construction building, or just an owner wanting to use it for maintenance requirements.” The app allows for real-time collaboration, working something like Google Docs or Airtable, with unique user profiles and version histories. Users can also assign tasks to each other, which are directly related to specific elements—rooms, doors, lights, whatever—that have been populated from Revit. After the Revit model has been synced one time, any changes in the model get reflected in Layer and users can click through the Revit model and Layer can automatically pull up information based on where they are in their model. “There's no sync button, there's no exporting information,” explained Soflin. Any changes made in Revit are also reflected immediately in Layer—whether shifting dimensions, adding elements, deleting rooms, or any other action. The goal of Layer is to increase project transparency and ease of use by allowing all of the information on a building to exist together and to allow team communication to happen within the same space. “One of the biggest concepts behind Layer is ‘contextualized information,’” Soflin said, noting that directly integrating with BIM software allows for richer data right in the design process. You can “have conversations directly within the context of the building itself.”
Placeholder Alt Text

How the U.K. forged a path to global BIM standards

During my days as a technology vendor, I chafed at the idea of introducing government standards for technology developed by a polyglot group of stakeholders. Users, software companies, and bureaucrats often sought a “lowest common denominator” between various software, sacrificing innovation and progress for vague notions like “open access.” In the early days of Building Information Modeling (BIM), several such efforts emerged, the most prominent of which were the General Services Administration (GSA) attempts to create a standard and the development of BIM-derived digital permitting submissions in Singapore. Both projects garnered much attention but gained little traction in the form of implemented technologies or operating protocols—at least in their early forms. But they had one important effect: In the loosely organized, disparate network of the building industry supply chain, government could provide a galvanizing influence. At least when government spoke, the industry listened.

In 2011, however, we witnessed a welcome change with the publication of the United Kingdom’s “Government Construction Strategy.” Much of the early theory about industry productivity and need for process integration had long emerged from that side of the Atlantic—for example, Sir Roger Egan’s seminal “Rethinking Construction” report—but there was little action. The David Cameron government, however, saw construction as a critical economic engine, concluding that improving the cost and carbon impacts of building while bolstering U.K. capabilities as a global building leader would drive growth. One pillar of the resulting government policy document was BIM, and the following requirement: “2.32. Government will require fully collaborative 3-D BIM (with all project and asset information, documentation, and data being electronic) as a minimum by 2016. A staged plan will be published with mandated milestones showing measurable progress at the end of each year.”

As upwards of 40 percent of construction dollars in the U.K. are spent by the government, the industry snapped to attention, formed cross-industry collaborations, and established and implemented BIM requirements for all their projects (with logistical and financial support from the government). BIM adoption shot up from 10 percent in 2012 to 70 percent by 2018, and savings on the first prototype projects were estimated at as much as 2.5 percent of the total lifetime cost of designing, building, and operating the project. By my own estimate, that’s as much as five times the fees likely paid to the design team and 25 percent of original construction cost. Not bad for a first effort. And, in typical British fashion, the resulting standards (search online for “PAS 1192”) were clear, rigorous, and implementable.

The success of the U.K. effort has spread across Europe, and EU government leaders have taken similar roles (at least until Brexit) in developing standards for the entire European Union, while also establishing footholds with other global networks, most notably in Latin America and Southeast Asia. Singapore, in collaboration with the U.K. team, has spurred a multiyear effort to create a standards collaboration there. As we approach the end of the second decade of BIM, one can see the slow emergence of a global network of BIM standards leading to a single market BIM, catalyzed by what may be the only cohering force in the building universe: the long arm of the law.

Now that the technology is mature and its use stable, global BIM standards are a good thing. The U.K. effort rightly became the basis of a worldwide standard created by the International Organization for Standardization (ISO; see ISO Standard 19650) and released in early 2019. Based on the now viral PAS 1192, ISO describes its work as “recommended concepts and principles for business processes across the built environment sector in support of the management and production of information during the life cycle of built assets (referred to as 'information management’) when using building information modelling (BIM).” Note the emphasis on business process driving the technology standard; precisely the right relationship for creating a stable platform for the otherwise disparate players in the global building industry.

And there’s an even larger idea here. What’s most powerful about the U.K.’s trailblazing work on BIM standards is the origin point: Rather than start with the prosaic, bottom-up question of lowest common denominator tech standards, they chose a broad organizing principle—improving building through technology is good for the economy and the environment, and doing this in a way that is agnostic to specific technologies or proprietary software drives competitive innovation that helps the entire market.

Driving BIM standards has further benefits to government, not the least of which is transactional transparency. State-run construction is rife with overbidding, conflicts of interest, and corruption. A bedrock principle of “collaborative 3-D BIM” is information clarity—all members of the building team can see and understand the physical and technical characteristics of the project in parametric three dimensions, along with the resulting arithmetic of cost projection—which makes it that much harder to manipulate a bid.

In the early days of the U.K. project there was an appointed Chief Government Construction Advisor with a direct line to high-level policy makers in the Cabinet. The United States’ construction market, roughly five times the size of the U.K.’s, could surely benefit from some policy-driven federal leadership, something that is certainly hard to imagine in today’s administration and go-go economy. But when the inevitable downturn does occur, we’ll know which way to look for inspiration for industry improvement.

Placeholder Alt Text

The solar-powered FutureHAUS is coming to Times Square

New housing is coming to Times Square, at least temporarily. The Virginia Tech team of students and faculty behind the FutureHAUS, which won the Solar Decathlon Middle East 2018, a competition supported by the Dubai Electricity and Water Authority and U.S. Department of Energy, will bring a new iteration of its solar-powered home to New York for New York Design Week in collaboration with New York City–based architects DXA Studio. The first Dubai iteration was a 900-square-foot prefab home, that, in addition to being entirely solar powered, featured 67 “futuristic devices,” centered around a few core areas including, according to the team’s website: “entertainment, energy management, aging-in-place, and accessibility.” This included everything from gait recognition for unique user identities and taps that put out precise amounts of water given by voice control to tables with integrated displays and AV-outfitted adjustable rooms. One of the home’s biggest innovations, however, is its cartridge system, developed over the past 20 years by Virginia Tech professor Joe Wheeler. The home comprises a number of prefabricated blocks or "cartridges"—a series of program cartridges includes the kitchen and the living room, and a series of service cartridges contained wet mechanical space and a solar power system. The spine cartridge integrates all these various parts and provides the “central nervous system” to the high-tech house. These all form walls or central mechanical elements that then serve as the central structure the home is built around, sort of like high-tech LEGO blocks. The inspiration behind the cartridges came from the high-efficiency industrial manufacturing and assembly line techniques of the automotive and aerospace industries and leveraged the latest in digital fabrication, CNC routing, robotics, and 3D printing all managed and operated through BIM software. Once the cartridges have been fabricated, assembly is fast. In New York it will take just three days to be packed, shipped, and constructed, “a testament to how successful this system of fabrication and construction is,” said Jordan Rogove, a partner DXA Studio, who is helping realize the New York version of the home. The FutureHAUS team claims that this fast construction leads to a higher-quality final product and ends up reducing cost overall. The cartridge system also came in handy when building in New York with its notoriously complicated permitting process and limited space. “In Dubai an eight-ton crane was used to assemble the cartridges,” explained Rogove. “But to use a crane in Times Square requires a lengthy permit process and approval from the MTA directly below. Thankfully the cartridge system is so versatile that the team has devised a way to assemble without the crane and production it would've entailed.” There have obviously been some alterations to the FutureHAUS in New York. For example, while in Dubai there were screen walls and a courtyard with olive trees and yucca, the Times Square house will be totally open and easy to see, decorated with plants native to the area. The FutureHAUS will be up in Times Square for a week and a half during New York’s design week, May 10 through May 22.
Placeholder Alt Text

NASA's habitats of the future will be 3D printed on Mars

After four years, three stages, and countless submissions, NASA’s 3D-Printed Habitat Challenge is winding to a close. The space agency’s competition to design a habitat that could be built on the Moon, Mars, or other planets made of local materials is reaching the final stage, and NASA has awarded $100,000 to be split among the three winners of the complete virtual construction stage. Eleven teams submitted proposals for the complete virtual construction stage, and on March 27, New York’s SEarch+ and Apis Cor took first place and received $33,954.11; the Rogers, Arkansas–based Team Zopherus took second and received $33,422.01; and New Haven, Connecticut’s Mars Incubator placed third and received $32,623.88. The complete virtual construction challenge asked teams to digitally realize their designs in the Martian environment using BIM, building off of an earlier stage in the competition that involved renderings. This time, competitors were judged on the habitat’s layout, programming, scalability, spatial efficiency, and constructability. Smaller 3D-printed models and videos were also produced. SEarch+ and Apis Cor proposed a series of tiered, rook-like towers printed from Martian regolith. The habitat’s hyperboloid shape, resembling a squeezed cylinder, arose naturally from the need to contain the building’s inward pressure; in a low-pressure environment, the greatest force exerted on a pressurized structure is a gas pushing outward (think of inflating a balloon). The habitat’s living areas and laboratories are connected but compartmentalized in case of an emergency thanks to a central service core. Each hexagonal window assembly was designed to be easily assembled in-situ and would contain redundant seals and pressure panes. Zopherus’s concept was simpler and lower to the ground, consisting of a series of latticed domes. The habitat(s) would be assembled by a lander, which would launch a series of autonomous robots to collect the raw materials. It would then mix the materials and print each hexagonal structure from the ground up, making “concrete” from Martian dirt, ice, and calcium oxide. The habitat and adjoining modules would be optimized to capture as much sunlight as possible, but would also include sliding panels to shield the windows for when the solar rays would be too intense. Mars Incubator chose to use a modular panel system for their proposal, utilizing regolith to create the panels’ plates. A central icosahedron would connect to several supplementary pods, and the entire structure would be elevated via a series of support struts, with the critical systems buried below. The primary living space would branch off and connect to a vestibule, multi-use space, and bio-generation pod where plants could be grown. The 3D-Printed Habitat Challenge is part of NASA’s Centennial Challenges program and is managed in part with Bradley University. The complete virtual construction stage was the fourth of five stages in the third phase, and the last leg of the competition will be held from May 1 through 4 at Bradley University in Peoria, Illinois, where teams will 3D print one-third scale versions of their habitats. The winners will split an $800,000 pot.
Placeholder Alt Text

Startups are riding the tech wave to build the future of the AEC industry

There’s a perfect storm brewing in the AEC industry with respect to technology, and startup tech companies are stoked because the waves are finally rolling in. A number of factors are contributing to the sudden surge. An increasingly urban population along with a changing climate is placing unprecedented pressure on the built environment, according to Jesse Devitte, co-founder of Borealis Ventures, an early stage venture capital firm geared toward the AEC industry. Fortunately, mobile devices, cloud computing, and endless sensors capturing data have reached near-ubiquitous status just as a slew of game-changing technologies such as BIM, AR/VR, and Blockchain are arriving, he notes. “It really does feel like the industry is at a unique moment in time,” Devitte said. “I can tell you one thing for certain: in my three decades of involvement in AEC software I have never seen so much activity. In fact, I wake up to a new startup in my email every single morning, seven days a week.” As a veteran who was part of Autodesk’s former Softdesk team and who organized the company’s AEC business unit, Devitte is well versed in venture capital. Upon leaving Autodesk, he co-founded Borealis Ventures to support the next generation of software entrepreneurs. “Today, we are focused on overcoming the traditional fragmented and resulting industry inefficiency by backing startups focused on driving data across the entire building lifecycle,” he explained. The Borealis team identifies and works with teams and technologies materially improving how the built environment is designed, constructed, operated, and experienced—and the potential for a startup to achieve industry disruption has never been better, he says. “That doesn’t mean it is easy,” Devitte pointed out. “You are still selling to project-based businesses, which, on the design side, have more work than ever but are facing narrower margins,” he said. On the construction side, he paints a rather harrowing picture. Likening it to upgrading a plane mid-flight at low altitudes, Devitte says construction professionals are “attempting to safely deliver the highest quality product on time and budget for the real estate owners, who have their own challenges including the phenomena of ‘space as a service,’ which is the opposite of the long-term investment/cash flow ROI model that built the asset class.”

Welcome to the Start Tank

But shifts of this magnitude are precisely what’s needed to create waves for real market transformation. “These big waves may indeed be the proof that digital transformation of this industry has reached an inflection point—and that is the ideal time to invest for maximum return,” Devitte observed. To those willing to test the tech-infested waters, they’ll have the opportunity to dive in during Start Tank, shark tank-like feature for exhibiting start-ups to pitch their winning ideas to potential investors and customers at this year’s TECH+ expo in New York City on May 22nd. Led by Devitte and featuring special guest judges Dareen Salama (Lehrer) Justin Hendrix (NYC Media Lab), and Greg Schleusner (HOK), Start Tank will enable startups to get their stories out to the market. “For potential customers it is a unique opportunity to learn about solutions they can deploy to advance their businesses,” Devitte said. “To make sure we deliver on both of those fronts, the judges are industry professionals who are potential customers for the startups. And as we say in the venture business, we will see if the ‘dogs eat the food,’ all while having fun in a positive environment.”
Placeholder Alt Text

Meet the Georgia Tech laboratory advancing digitally integrated design

Meet the incubators and accelerators producing the new guard of design and architecture start-ups. This is part of a series profiling incubators and accelerators from our April 2018 Technology issue.  Founded by Professor Chuck Eastman, a renowned trailblazer in building computer sciences and one of the creators of BIM, Georgia Institute of Technology's Digital Building Laboratory (DBL) in Atlanta quickly earned a sterling reputation after its founding in 2009. Now led by Associate Professor Dennis Shelden, an architect and digital technology expert who previously was the director of research and development and computing for Frank Gehry, the lab aims to harness its educational position as an indispensable source for knowledge capital. “We have a strong connection to the professional practice,” said Shelden. “Our ability to connect between technology and projects as an academic institution is one of our most valuable assets. We are very much focused on solving concrete problems through our research and our role as an academic and open research institution.” The DBL particularly focuses on “helping students disrupt the industry in order to collectively advance it.” This includes pushing open-source initiatives and embarking on ventures that might be too risky for a company to take on, with the awareness that free innovation now could yield big returns later. In addition to supporting Georgia Tech’s School of Architecture, the DBL creates programs around entrepreneurship along with developing new and advancing technology. “What is happening now is that reduced friction across the building industry creates new opportunities and risks,” said Shelden. “Architects have an expanded reach into other domains and can tackle environmental engineering and other tasks that used to require retaining an outside consultant. But on the other side, that means developers and contractors can do in-house architectural and consulting work. So, we see a convergence in the industry, and there are great opportunities but also a lot of new competition that didn’t exist before.” The incubator champions AECO technology-related entrepreneurship while focusing on four technical areas representing the most disruptive potential for the AECO industries: data standards and interoperability, integrated project systems, design and construction automation, and smart buildings and cities. The laboratory currently hosts several departments: the living laboratory campus, a testing ground for “digitally integrated design, construction, and operations projects;” the technology test bed, a place for testing data exchange and interoperability scenarios; and a Digital Fabrication Lab, a 13,000-square-foot space for prototyping and research; as well as research and entrepreneurship programs. Contributing members to the DBL are Autodesk, Oldcastle, and Vectorworks, and associate members include Perkins+Will, the Smithsonian Institute, Thornton Tomasetti, Skanska, and SmartBIM Technologies.

Notable alumni include:

Kereshmeh Afsari

Defended thesis in November 2016 and is now an assistant professor in the School of Construction Management Technology and the Department of Computer Graphics Technology at Purdue University.

Marcelo Bernal

Graduated spring 2016 and is now an assistant professor in the department of architecture, Universidad Técnica Federico Santa María.

Yongcheol Lee

Defended thesis in November 2015 and is now an assistant professor at Louisiana State University, Baton Rouge, in the department of construction management.

Hugo Sheward

Defended thesis in fall 2015 and is now an assistant professor at the School of Architecture, University of Kansas.

Shiva Aram

Defended thesis in December 2015 and is now the strategy lead and senior product line manager at Cisco.

Placeholder Alt Text

Talking about our tech future with the Digital Building Lab

When examining technology transforming the AEC industry, Dennis Shelden emerges as a thought leader. He is an expert in applying digital technology to building design, construction, and operations, with experience spanning across research, technology, and development, and professional practice, including multiple architecture, building engineering and computing disciplines. He was director of R&D and led the development of Frank Gehry’s digital practice from 1997-2002, eventually co-founding Gehry Technologies. Shelden has lectured and written widely on topics concerning computational applications to architecture. He currently directs the Digital Building Laboratory (DBL) at the Georgia Institute of Technology. AN Special Projects Director Marty Wood sat down with Shelden to learn more. The Architect’s Newspaper: Can you talk about the DBL and the new directions you are pursuing given the trends in emergent technology and software tools? Dennis Shelden: The DBL has always been an academic institution oriented toward industry advancement through applications of technology. We’ve pursued that ambition through three mechanisms. First, the DBL serves to create a community among professional firms, technology companies, and academic programs across Georgia Tech. We are at our most effective when we can be a bridge among these three constituencies through “active education and research”—connecting research faculty and students to real-world projects and enlisting emerging technologies in new ways. Second, the lab has a research mission of its own. Under my predecessor Professor Chuck Eastman, the DBL has become an important source of innovation and leadership in design computing, specifically in BIM, collaborative processes, open information exchange, and interoperability. Third, we are focused on building the next generation of technical leaders in architecture and construction, through educational curricula at all levels of the architecture and building construction programs at Georgia Tech. I believe that these three functions and our historical areas of research set us up to tackle some of the emerging trends in technology for the built environment. BIM data is finally moving to the web and the cloud, which will create a host of new opportunities connecting to and making use of this data. Some of these possibilities include connections to real-time data from building systems, Internet of Things, and connected mobile and social networks. We are also seeing a convergence between building level and city level information, where you manage and interact with large-scale built environment data that scales down to the individual room, fixture, or device. How is the business of AEC technology changing, and is there a role for academia in building out these new directions? The nature of technology development is definitely changing. In the 20th century, it required very large companies with many different functions to be able to develop and sell a software product. The technology product business was completely different than professional consulting services. But today the barriers to “industrializing” technology to the point where it can be consumed by others are much lower, since there is so much infrastructure out there that can be leveraged, and the web makes marketing and distribution so much easier to scale. Professional practice is changing, too, and we’re seeing firms that are exploring new ways of capitalizing on the innovations they create. More firms are creating open source software, developing plug-ins, or creating spin-offs to either offer new specialized services or pursue product innovations. At the same time, the AEC world needs open platforms for these innovations to be built on and connect to. Some of these are offered by software companies’ plug-in and app development platforms, but the world really needs open standards and communications capabilities based on modern web paradigms that can bridge across AEC disciplines. I believe that academia and government have important roles to play in building these open industry platforms. Being connected through the cloud is one thing, but is this just about better design tools? There is a lot of emerging discussion of cyber-physical systems and the idea of the digital twin. The idea of the digital twin is essentially that BIM will become part of the post-occupancy delivered building and “run in parallel” to the building systems and experienced environment. We’ve historically focused a lot on the technologies for designing and delivering buildings, but the possibilities for these technologies to create a continuum of information is potentially a huge opportunity for the industry. We also see a lot of interest from the tech industry starting to come into the AEC industry precisely because it sees the built environment as the next platform for interaction with technology. Are these things you practice internally? University campuses are small, contained cities with all the necessary functions from design and construction to the daily delivery services under one umbrella. So if we get this right for Georgia Tech, then we have a model for delivering built environment technology innovation that we can scale to the broader industry. Again, I think the open platforms for industry innovation will be built by academia and nonprofit enterprises to start. There must be examples of industry, in terms of interoperable standards, that get shared and not privatized. Novel delivery systems can give you a competitive advantage. Think about what it took for government, academia, and industry working together to create the internet. I think that’s a model for what AEC needs to do now. The next layer of what AEC needs to make that kind of value creation a possibility for all the stakeholders still has to be built. That’s kind of the nucleus, that kind of vision of a possible industry state, that we are trying to help build out in the next phase of the DBL.
Placeholder Alt Text

At Lehrer, changes in construction practices requires a holistic approach to technology

If a company is looking to affect change in the AEC industry, where does it start? Artificial intelligence and machine learning are sexy (in a nerdy kind of way), but practical application is where the rubber meets the road, so to speak. That intersection is where Dareen Salama, director of technical services at design and construction advisory firm Lehrer, LLC, found herself upon completing her Master of Science in Civil Engineering & Construction Management from the University of Illinois Urbana-Champaign and entering the workforce. As the complexity of construction projects continues to grow due to advances in technology, Lehrer guides owners, developers and institutions through the process. “I started here in New York and realized [there’s a] divide between what is possible in terms of technology and what is really implemented in the industry,” she recalled. “So, then I took a step back and said, 'OK, so let’s keep machine learning and artificial intelligence on the side for now and kind of focus on the practical applications that are there.’” The project controls specialist concentrated her work on project management systems, building information modeling, project control systems, and other facets of the design and construction process to help implement new technologies within an industry that traditionally has been sluggish to adopt them.

Reaping the benefits of efficiency

The shift was pivotal. As Salama built the case for BIM, it opened the door to participate in many significant infrastructure projects across the country, including LaGuardia Airport, where she guided the Port Authority in implementing BIM and cloud-based systems to modernize its processes. After landing at Lehrer last year, Salama discovered “the real strength lies with the [building] owners. The owners have that holistic view of the full life cycle,” she explained. “They would reap the benefits of efficiency through design, construction, and facility management and operation. So that’s what Lehrer focuses on,” she said. Lehrer’s primary function is to advise clients engaged in major construction projects, but the firm’s view of a project doesn’t just begin with design and end with TCO or construction completion, however. “Aiding in delivering a beautifully-designed project within budget and schedule is a given—we are thinking beyond that, thinking about the end user, whether it is the person using the building as a resident, or the person running the building as the operator,” said Elissa Conners, marketing manager at Lehrer. “And that’s really where the data piece of leveraging the efficiency that is slowly but surely becoming mainstream in the industry in design and construction [comes in] and utilizing it to help optimize facilities, operations and maintenance when running the building.” Salama is currently involved in one of New York City’s major infrastructure upgrade projects at the Jacob K. Javits Center expansion, focusing on design, construction, and facility management to realize efficiencies through technology and innovation. Implementing technology in projects like the Javits Center and across the industry boils down to three things: technology, people, and process. “I think the industry is really facing challenges with all of that,” she noted. While many may argue technology has “arrived,” Salama disagrees as far as the AEC industry is concerned­. “The technology is out there in terms of concepts and algorithms and platforms that we use in anything else but construction,” she observed. While the industry continues to lag behind consumer electronics, for example, Salama sees growing interest from investors in startups that have emerged in the industry during the past year.

Cultural, process challenges are significant

The people variable presents an even more significant barrier to progress, not only from a hierarchical or cultural standpoint, but also in terms of attracting talent. Salama explains how on any given project, there may be 60 to 70 different companies involved, from the owner to the consultants and the subcontractors. As a result, “it’s quite difficult to change the culture throughout all these different companies and try to figure out technology that works for all of them given the duration that you have.” She notes that during the course of a three-year project, a third of that time may be spent attempting to get people on board with process and technology modifications. Additionally, she said, it’s rare to see young talent coming from computer science schools entering the AEC field. “It’s just not the go-to industry for top talent. They would definitely go in other directions,” she explained, adding that if technology graduates better understood the opportunity, the industry would be well-poised to attract them. Finally, altering construction practices requires much more than a surface-level application of new technologies—yet attempting to automate old processes is commonplace. Existing document standards, contracts, and specifications that function in the world of hard copies and standard contract delivery methods simply doesn’t translate well into cloud-based systems, BIM, and mobile apps, she noted. “It’s not an easy fix of, ‘Let’s just apply technology; let’s just buy this piece of software,’ which people are frankly looking for,” she said. “It’s not really about what you buy, but it has to be embedded in everything that you do: your people, your process, and then at the end, what you buy fits that world.”
Placeholder Alt Text

Digital sketching app makes it easy to create perspective drawings

For years, leaders of architectural firms have bemoaned the lack of hand drawing skills among recent graduates and young professionals entering the practice. With a tendency to bypass hand drawing and rely primarily on computer-aided design software and BIM, it seemed for a time as though hand sketching was a dying art among architectural apprentices. To that point, the late Michael Graves observed in a 2012 op-ed piece in The New York Times that it had “become fashionable in architectural circles to declare the death of drawing.” As digital design and drawing tools have become more sophisticated in recent years, however, it’s clear not only that the art of hand sketching is alive and well, but also that technology is ushering in a revival of illustrating and is transforming the process of architectural drawing for the better. “What we’re seeing right now is a huge renaissance in terms of the generation who is already out in offices, and they’re saying to us, ‘We are so happy to be drawing again,’” explained Anna Kenoff, co-founder of creative app development company, Morpholio. Recognizing a need in the market for architectural tools that go beyond simply doodling on a tablet, Kenoff and company launched Morpholio Trace, a drawing app created specifically for architects and designers that infuses “digital magic” into the analog tools of trace paper, technical pens, rulers, triangles, and stencils. “Our app puts scale drawing at the center of the experience, letting designers work intuitively with an iPad Pro and their hands while not losing any accuracy in the process” said Kenoff. With Trace, architects and designers can sketch over computer-generated models, mark up PDF’s of construction drawings, or sketch ideas as they evolve from concept to reality. Additionally, Morpholio added augmented reality (AR) to Trace with the recent launch of its AR Perspective Finder feature. Powered by the iPad and Apple’s ARKit to read and interpret the surrounding environment, this new drawing tool allows users to uncover virtual perspective girds to scale, anywhere. How It Works By launching the camera from within the Trace app’s ‘Projects’ area, architects can point the device toward a surface, which the iPad will automatically register and render an overlaying grid. The center point is set by tapping the screen at the desired location and can be rotated with the swipe of a finger. The scaled grid can then be presented for a walk through or captured by the app to automatically set up a drawing with the background, grid, and vanishing points ready to sketch over—simplifying the process of creating perspective drawings when compared to traditional hand-drawing methods. [vimeo 234090562 w=645 h=362] AR Trace Turns Your iPad into a Virtual Perspective Finder to Help You Draw Like a Pro from Morpholio on Vimeo. “What architects and designers draw literally becomes our world but it always requires cumbersome CAD products to effectively visualize those designs” said Morpholio Co-Founder Mark Collins in a press release. “With ARKit and Perspective Finder, we are leaving behind the frustrations and limitations of conventional perspective drawing, yet continuing to further amplify hand drawing, thanks to the iPadPro and Apple Pencil; a gift to designers who value the freedom, intuition and joy of sketching.”
Placeholder Alt Text

Tessellated BIM cloud wraps new engineering school

An undulating aluminum panels rainscreen features around 9000 individual triangular panels, with 1000 high performance glass units.

York University is a research-oriented public university in Toronto known for its arts, humanities & business programs. Nestled into the landscape on the edge of campus and overlooking a pond and arboretum, the Bergeron Center for Engineering Excellence is a 169,000 sq. ft., five-story LEED Gold facility housing classrooms, laboratory spaces, offices, and flexible informal learning and social spaces. Designed with the idea of a scaleless, dynamically changing cloud in mind, ZAS Architects + Interiors designed an ovoid-shaped building wrapped in a custom triangulated aluminum composite panel (ACP) cladding with structural silicone glazed (SSG) type windows. Costas Catsaros, Associate at ZAS, says the building will help to establish the emerging school by establishing a dynamic, ever-changing identity. There are two main generators of the Bergeron Centre’s cloud geometry: the building floor plate shape, and various forces manipulating the topology of the cladding surface. The floor plan is designed around 8 curves: a primary curve establishing north, south, east, and west orientations, along with a radius at each corner. Center points of the radii provide reference points for additional sets of geometry and field surveying benchmarks during the construction phase. The resulting ovoid-shaped floor plate, challenged the architects with developing an effective way to wrap the building. They focused on the work of Sir Roger Penrose, a mathematical physicist, mathematician and philosopher of science, whose tessellation patterns inspired an efficient way to generate repetitive patterns using a limited number of shapes. Through an intensive design process, the architects were able to clad 85% of the building using only three triangular shapes, scaled based on industry standard limitations for ACP panel sizes. The other panels were cropped by undulating edge geometry along the soffit and parapet edge curves of the surface. To achieve a dynamic effect, the panels inflect at up to 2” in depth, creating an individualized normal vector per panel. By canting the triangulated panels, subtle variation in color and reflectivity is achieved. Additionally, the architects scattered color-changing dichroic paneling throughout a field of reflective anodized panels, while dark colored panels casually cluster around window openings to blur the perceptual edge between solid and void.  
  • Facade Manufacturer Flynn (building envelope system), Norwex Steel (steel fabricator)
  • Architects ZAS Architects + Interiors
  • Facade Installer Laing O’Rourke (contractor)
  • Facade Consultants Flynn (building envelope), Blackwell (structural engineering)
  • Location Toronto, Canada
  • Date of Completion 2015
  • System Curtain wall and custom rainscreen assembly clipped to cast-in-place concrete structure
  • Products Aluminum composite panels with dark gray, light gray, and dichroic finishes; Structural silicone glazed (SSG) windows by APA Systems (Ireland)
The building substrate framing is designed with the complex geometry of the rainscreen system in mind. A modular pre-framed structural unit was developed through a highly coordinated BIM information exchange process which resulted in custom support collar detailing at window openings, a unique two-piece girt system to provide concealed attachment for the ACP panels, and a method to allow for up to 1” of tolerance within the wall assembly through reveal gaps in the cladding. During this process, a design model was passed along from the architects to the structural engineer, who developed a construction model in a 3D CAD Design Software. This model was utilized to generate shop drawings, and shared with the steel fabricator, who shared the model with Flynn, a building envelope consultant, to coordinate the rainscreen panelization with respect to window openings in the building envelope. Catsaros says this was a very successful leverage of BIM technology: "It was a very intense process, but worth it in the end. Laing O’Rourke [general contractor] was able to close in the building a lot faster than if this had been done in a conventional process." Closing in the building early in the construction process was critical on this job, which required an opening date in time for the beginning of the school year in September. This required a peak in construction activity during the middle of winter, which would have presented difficulty on an open job site. The off site production and rapid assembly of the building envelope established a warm dry environment for the installation of sophisticated (and costly) laboratory equipment and building systems, none of which would have been possible with the threat of cold weather and moisture an open building invites.
Placeholder Alt Text

Anaheim's ARTIC high speed rail station packs a serious technical punch

HOK’s ARTIC, Anaheim's high speed rail train station which AN featured today, is as much a story about technology and engineering as it is about high design. Slated to achieve a LEED Platinum rating, ARTIC is the product of an integrated, multidisciplinary BIM design process where key decisions about technology and engineering were brought into the design process from the beginning to achieve a high-tech, high-performance, and high-efficiency building. The building’s curved diagrid geometry, rationalized using CATIA, is like a contemporary reboot of the glass and steel structures that defined iconic terminals like Philadelphia’s Broad Street Station and New York City’s original Penn Station. The parabolic shell design was also utilized for its structural efficiency and for its environmental properties. For efficiency, the design team decided to go with ultra-lightweight ETFE pillows (1/100th the weight of glass). This allowed for significant reductions in foundation size and structural member dimensions. ARTIC is currently the largest ETFE-clad building in North America, with over 200,000 square feet of the high-tech material covering most of the building’s long-span shell. The ETFE system also helps to regulate heat gain and maximize daylighting while maintaining an environment that utilizes a mixed mode natural ventilation system. The building’s shape and translucent ETFE envelope work in concert with a radiant heating and cooling slab system in the public areas (optimized HVAC is used in office and retail spaces) to produce a microclimate through convection currents. This makes it possible for the building to be naturally ventilated most of the time. Heat rises and escapes through operable louvers at the top portions of the north and south curtain walls.
Placeholder Alt Text

Dig Deep into Digital Design at Facades+ Dallas

Today’s AEC professionals are more to reach for a computer mouse then they are a drafting pencil. Understanding and being able fully utilize cutting-edge digital design tools is essential to contemporary architectural practice, particularly the design of high-performance building skins. Attendees at next month’s Facades+ Dallas conference can choose among four hands-on tech workshops in a unique program designed to deliver in-depth exposure to platforms including Autodesk Revit, Autodesk Vasari, and Grasshopper. The tech workshops, all of which focus specifically on building enclosures, “are heavily attended by professionals, by people wanting to take that next step and participate in a more active dialogue,” said Mode Lab’s Ronnie Parsons. “They are at once about learning, and about taking on the role of a leader who could potentially shape what’s happening—who could be on the podium next time.” The Dallas lineup includes “Computational Design for BIM,” taught by Parsons and Erick Katzenstein, also of Mode Lab; “Balancing Cost and Performance Through Simulation,” with HKS LINE’s Tim Logan and Paul Ferrer; “Parametric Facade Design Fundamentals,” led by Andrew Vrana of Metalab; and “Environmental Analysis and Facade Optimization Strategies,” taught by Colin McCrone and Mohammad Asl, both of Autodesk. Participants in “Computational Design for BIM” will also receive a one-month complimentary subscription to Mode Lab Academy. The tech workshops take place on the second day of Facades+ Dallas at CityPlace Events. They are designed to draw from and extend the discussions begun during the symposium on day 1, explained Parsons. “The way that the Facades+ conference has been crafted is in terms of a holistic experience.” For information and to register for tech workshops, visit the conference website.