Posts tagged with "Aluminum Composite Panels":

Placeholder Alt Text

AIA award-winning cancer center showcases a minimalist brise-soleil

facadeplus_logo1
Brought to you with support from

ZGF Architects teamed up with Hensel Phelps Construction to deliver a custom 220,000-square-foot design-build cancer center for the University of Arizona at Dignity Health St. Joseph’s Hospital and Medical Center. The facility incorporates an “evidence-based, multidisciplinary model of healthcare” and utilizes the most modern technologies. An exterior shade system, along with chilled beams—the first to be used in an Arizona healthcare setting—greatly contribute to the facility’s sustainability. The east and west facades are clad with a solar shading system composed of repetitive rectangular quarter-inch aluminum composite panels (ACP) perforated with half-inch diameter holes yielding a 40 percent openness factor. The panels are folded once at a calculated angle, bending outward to reveal a shaded view of the surrounding desert context from the interior. This copper-toned assembly takes on the coloration of the landscape, adding a contextual aesthetic to the project. The assembly sits 30 inches off a facade of stucco and curtainwall glazing—a dimension that allows maintenance access to the exterior envelope for clean­ing and repairs. The panels are supported directly by a tube steel frame hung from a series of outriggers that cantilever from a hefty 16-inch reinforced concrete roof slab. These “diving boards” establish a dimensional grid that is constructed from the individual 15-foot-6-inch by 5-foot-3-inch panels. Additional outriggers on the same grid provide lateral support, tracking through the facade onto the slab edge.
  • Facade Manufacturer Kovach Building Enclosures (Metal Panels); KT Fabrication (Curtain Wall)
  • Architects ZGF Architects LLP
  • Facade Installer Kovach Building Enclosures (Metal Panels); KT Fabrication (Curtain Wall)
  • General Contractor Hensel Phelps Construction Company
  • Location Phoenix, AZ
  • Date of Completion 2015
  • System cast-in-place concrete, chilled beams, curtainwall, custom ACP solar shade
  • Products Metal Panel Weather Wall: Kovach Rain Screen Cladding System: KRS-225; Penthouse Metal Panel: K-Wall (by Kovach); Kovabond (ACP); KT Fabrication 625, 425, 730, and 1230 curtainwall systems; BASF Senerflex, Clark Western/Flannery Inc., SpecMix (stucco); BASF Senershield / Senerwrap, Grace Ice & Water Shield, Tremco (moisture barrier); Laticrete / Sun Valley Masonry (stone tile)
The project delivery was design-build, per University of Arizona’s requirements. Mitra Memari, principal at ZGF, said the process benefitted from a close working relationship between ZGF and Hensel Phelps, which previously teamed up to complete a different project on University of Arizona’s main campus: “Having gone through this process, one of the key factors in making a design-build project successful is the relationship. Hansel Phelps knows ZGF very well and our design aesthetic, and we know Hansel Phelps very well…specifically individuals who worked on the project. This played well for the university and the end product." Memari said the success of the collaboration is evident in the fact that, for the $74-million project, over 90 percent of the 450 RFIs received were “confirming RFIs” to provide clear communications and exact resolution records. The primary purpose of the screen system is to reduce peak mechanical loads in the building. More than 10 variations of the assembly were studied by the architects, who were looking for a configuration that maximizes view and reduces glare, while properly shading the building. The project team was able to work with the fabricator from a very early point in the project, which allowed it to quickly optimize panel material, size, and configuration. A full size mock-up of a corner condition further helped to inform detailing decisions. Two types of shading panels—one per orientation— were developed in response to solar angles. The repetitive geometry also contributed to a quick construction schedule. The north and south facades feature a curtainwall system from KT Fabrication with three types of custom louver designs integrated in it. The most impressive is a series of canted glass fins incorporating a custom gray 60 percent frit patterning. The glass louvers denote the central area and the main lobby of the cancer center, providing a low-glare interior environment. Chilled beams play a major role in the energy efficiency of the building, reducing energy usage by 23 percent. The system was a first for healthcare projects in both the state and the university. Chilled beams utilize piped water located in the ceiling to naturally (and quietly) heat and cool the air using convection. ZGF incorporates chilled beams into nearly every project it takes on, and has introduced the system into many projects around the country. Beyond the facade, Memari said that one of the greatest successes of the project is an interior “communicating stair” that promotes walkability for staff and visitors through a carefully detailed, highly visible positioning within the building. The stair reads as a folded sculptural element to connect the facility’s tall 16- to 18-foot floor plates. The project opened in August 2015 and recently received a 2016 AIA Healthcare Design Award.
Placeholder Alt Text

Nested, CNC-milled fins produce moire effects

Inspired by lenticular effects and moire patterns, Synthesis Design has produced an engaging facade installation on a large commercial shopping center at Central Plaza Rayong. The system incorporates CNC-milled aluminum composite “fins,” with custom attachment details to produce two “fields” of surfaces that ripple along a precast concrete facade. Color applied to one side of the fins differentiates the to fields from one another. “This is something we’ve been interested in awhile: lenticular effects – visual effects dependent upon view orientation. We are interested in trying to increase the level of visual interactivity through the way people engage the project.” says Alvin Huang, founder of Synthesis Design. To achieve this, Huang and his team leveraged geometry from iterative digital study models. Utilizing scripts built in Grasshopper for Rhino, the team developed a series of surfaces defined by attractor curves that create ripples. Then, through a strategy of mirroring, a secondary field is created, utilizing off-cuts of the first field. The process results in two sets of seemingly unique undulating profiles that nest into one another.
  • Facade Manufacturer PK Aluminium Company
  • Architects Synthesis Design + Architecture (SDA Team: Alvin Huang (Principle), Chia-Ching, Filipa Valente, Joseph Sarafian, Kais Al-Rawi, Yuan Yao, & Alex Chan)
  • Facade Installer PK Aluminium Company
  • Facade Consultants Facade Associates Co. LTD
  • Location Rayong, Thailand
  • Date of Completion 2015
  • System 2D CNC plasma cut aluminum profiles with custom clip system on precast concrete
  • Products Aluminum composite material by ALPOLIC Materials of Mitsubishi Plastics Composites America, Inc.
The surfaces start fixed against the building facade. As the surface peels away from the precast facade, steel framework springs from a primary structural tube to cantilever the fin panels. Where the surface attaches to the precast facade, the team incorporated undulations into the profile geometry, allowing for specifically designed points of attachment to the building envelope. This reduces weight of the assembly, but more importantly helps mitigate wind loads on the fins, reducing design loads on the attachment points. “That was a significant issue in the design, because we were essentially creating a series of flags, so anything that can be done to reduce the amount of lateral force on the system helps.” In parallel to the design process, the architects worked with physical models in the office, while the fabricator developed 1:1 scale mockups testing installation details and structural performance of the cantilevered fins. The depth of the fins was optimized to be greatest in the middle where there is continuous support from a primary steel structure, and taper as they extend outward. Huang’s team produced design development drawings, and provided raw geometry for the fabrication team to develop cut sheets representing each individual fin profile. The process is evolutionary to other work being done in the office, says Huang: “We are interested in the Rayong project as an extension of other projects in the office that are three-dimensional products made from flat CNC-milled sheets, assembled to produce form.” What’s next from here? Huang says the office will continue to explore nesting and the attitude of trying to get more from less. “Through these projects, we are getting really interested in this notion of nesting – of trying to significantly reduce or even eliminate waste. Huang calls this “performative patterning” – a focus on how pattern, repetition, and variation promote a visual language of adaptive and varied geometry. “How can we get variation with a finite number of parts, rather than, as in Ryong – all of the profiles are unique – how can we achieve a similar effect with 6 or 7 profiles?”
Placeholder Alt Text

Tessellated BIM cloud wraps new engineering school

An undulating aluminum panels rainscreen features around 9000 individual triangular panels, with 1000 high performance glass units.

York University is a research-oriented public university in Toronto known for its arts, humanities & business programs. Nestled into the landscape on the edge of campus and overlooking a pond and arboretum, the Bergeron Center for Engineering Excellence is a 169,000 sq. ft., five-story LEED Gold facility housing classrooms, laboratory spaces, offices, and flexible informal learning and social spaces. Designed with the idea of a scaleless, dynamically changing cloud in mind, ZAS Architects + Interiors designed an ovoid-shaped building wrapped in a custom triangulated aluminum composite panel (ACP) cladding with structural silicone glazed (SSG) type windows. Costas Catsaros, Associate at ZAS, says the building will help to establish the emerging school by establishing a dynamic, ever-changing identity. There are two main generators of the Bergeron Centre’s cloud geometry: the building floor plate shape, and various forces manipulating the topology of the cladding surface. The floor plan is designed around 8 curves: a primary curve establishing north, south, east, and west orientations, along with a radius at each corner. Center points of the radii provide reference points for additional sets of geometry and field surveying benchmarks during the construction phase. The resulting ovoid-shaped floor plate, challenged the architects with developing an effective way to wrap the building. They focused on the work of Sir Roger Penrose, a mathematical physicist, mathematician and philosopher of science, whose tessellation patterns inspired an efficient way to generate repetitive patterns using a limited number of shapes. Through an intensive design process, the architects were able to clad 85% of the building using only three triangular shapes, scaled based on industry standard limitations for ACP panel sizes. The other panels were cropped by undulating edge geometry along the soffit and parapet edge curves of the surface. To achieve a dynamic effect, the panels inflect at up to 2” in depth, creating an individualized normal vector per panel. By canting the triangulated panels, subtle variation in color and reflectivity is achieved. Additionally, the architects scattered color-changing dichroic paneling throughout a field of reflective anodized panels, while dark colored panels casually cluster around window openings to blur the perceptual edge between solid and void.  
  • Facade Manufacturer Flynn (building envelope system), Norwex Steel (steel fabricator)
  • Architects ZAS Architects + Interiors
  • Facade Installer Laing O’Rourke (contractor)
  • Facade Consultants Flynn (building envelope), Blackwell (structural engineering)
  • Location Toronto, Canada
  • Date of Completion 2015
  • System Curtain wall and custom rainscreen assembly clipped to cast-in-place concrete structure
  • Products Aluminum composite panels with dark gray, light gray, and dichroic finishes; Structural silicone glazed (SSG) windows by APA Systems (Ireland)
The building substrate framing is designed with the complex geometry of the rainscreen system in mind. A modular pre-framed structural unit was developed through a highly coordinated BIM information exchange process which resulted in custom support collar detailing at window openings, a unique two-piece girt system to provide concealed attachment for the ACP panels, and a method to allow for up to 1” of tolerance within the wall assembly through reveal gaps in the cladding. During this process, a design model was passed along from the architects to the structural engineer, who developed a construction model in a 3D CAD Design Software. This model was utilized to generate shop drawings, and shared with the steel fabricator, who shared the model with Flynn, a building envelope consultant, to coordinate the rainscreen panelization with respect to window openings in the building envelope. Catsaros says this was a very successful leverage of BIM technology: "It was a very intense process, but worth it in the end. Laing O’Rourke [general contractor] was able to close in the building a lot faster than if this had been done in a conventional process." Closing in the building early in the construction process was critical on this job, which required an opening date in time for the beginning of the school year in September. This required a peak in construction activity during the middle of winter, which would have presented difficulty on an open job site. The off site production and rapid assembly of the building envelope established a warm dry environment for the installation of sophisticated (and costly) laboratory equipment and building systems, none of which would have been possible with the threat of cold weather and moisture an open building invites.