Posts tagged with "3d printed":

This experimental concrete roof is half the weight of its peers

A research team led by Jamin Dillenburger, an assistant professor at ETH Zurich, has recently produced and installed a concrete ceiling shaped by 3D-printed sand formwork. Dubbed the “Smart Slab,” the 1000 square-foot ceiling is significantly lighter and thinner than comparable concrete ceilings. The concrete slab is a component of ETH Zurich’s ongoing DFAB House project. The DFAB House is a load-bearing timber module prefabricated by robots. According to ETH Zurich, Dillenburger’s research group “developed a new software to fabricate the formwork elements, which is able to record and coordinate all parameters relevant to production.” In effect, the design of the ceiling is the product of the team-created software rather than analog design or planning. Following the design and digital testing phase of structural elements, the fabrication data was exported for the creation of 11 pallet-sized, 3D-printed sand formworks. After fabrication, each segment was cleared of sand particles and prepared for concrete spraying. The spray consisted of several layers of glass-fiber reinforced concrete. At its thinnest point, the concrete shell is less than one inch thick. After hardening for two weeks, the 11 concrete segments were joined to create the approximately 15-ton floor plate. While the underbelly’s contours were formed by 3D-printed sand casts, the ribbed grid above was shaped by CNC laser-cut timber formwork. The load-bearing ribs, resulting from timber formwork, were outfitted with a series of tubes for the insertion of steel cables both horizontally and vertically. These post-tensioned ribs carry the principal load of the “Smart Slab.” In placing the principal load above the concrete shell, the research team was able to insert complex geometric features below. The “Smart Slab” is not ETH Zurich’s first execution of an ultrathin concrete unit. Earlier this year, the university fabricated an undulating, two-inch thick roofing unit for a new live-work space in Zurich.

New 3D printing software churns out giant projects in one pass

Fabricators watch as an artificial hip joint comes together on the tray of a 3D printer.  This, doctors say, is the high-tech future of joint replacement. The printer's lone nozzle squirts plastic polymer out into the precise shape. However, in the time it takes to make a new joint, you could watch half a season of The Bachelor, or drive from New York City to eat poutine in Montreal. One company is addressing the time barrier with a new software that enables faster, and much bigger, 3D printing. Autodesk is creating a 3D printing system, dubbed Project Escher, will be able to create large objects in one pass. Project Escher divides larger designs into smaller instructional packages. The packages are sent to groups of printheads which work in tandem to produce the finished object. This factory-line approach speeds up the often painstakingly slow printing process for large, high-resolution pieces. The customization goes further: Project Escher's printheads are modular, making it easy to swap out different tools. For example, you could swap a printhead with a tool that removes supporting structures while the other five printheads churn out a product. This video shows just how this would happen. Printing large objects could have positive ramifications for architects: facades like this one could be fabricated in one session. Ornate wall-to-wall moldings or whole ceilings could be reproduced without interruption. Currently, larger-scale 3D printing is currently employed by archeologists replicating ancient buildings destroyed by ISIS in the Syrian city of Palmyra. To be clear, Autodesk is not building a new printer, just the software. The printer-savvy can build their own machines to accomodate the software, mere amateurs will have to wait for the hardware to catch up.

Learning from AMIE: a look into the future of 3d printing and sustainable energy management

A high-performance building prototype which shares energy with a natural-gas-powered hybrid electric vehicle.

A cross-disciplinary team at Oak Ridge National Laboratory (ORNL) have designed an innovative single-room building module to demonstrate new manufacturing and building technology pathways. The research project, named Additive Manufacturing Integrated Energy (AMIE), leverages rapid innovation through additive manufacturing, commonly known as ‘3d printing,’ to connect a natural-gas-powered hybrid electric vehicle to a high-performance building designed to produce, consume, and store renewable energy. The vehicle and building were developed concurrently as part of the AMIE project. The goal of AMIE was twofold according to Dr. Roderick Jackson, Group Leader of Building Envelope Systems Research and Project Lead for the AMIE project at ORNL: “First, how do we integrate two separate strains of energy: buildings and vehicles; and secondly, how do we use additive manufacturing as a way to create a framework for rapid innovation while not becoming constrained by the resources of today?” Additive manufacturing contributed to formal expression of the building envelope structure and offered efficiencies in material usage while significantly reducing construction waste. Jackson says the design and manufacturing process became embedded into the ‘rapid innovation’ spirit of the project. “The architects at SOM worked hand in hand with the manufacturing process, sharing the building model with the 3d printers in the same way that the vehicle shares power with building. For example, within the course of less than a week, between the manufacturer, the material supplier, the 3d printers, and the architects, we were able to work together to reduce the print time by more than 40%.” In total, the AMIE project – from research, through design, manufacturing, and assembly – took 9 months.
  • Facade Manufacturer Oak Ridge National Laboratory
  • Architects Skidmore, Owings & Merrill LLP
  • Facade Installer Clayton Homes (assembly)
  • Facade Consultants Oak Ridge National Laboratory (research), Skidmore, Owings & Merrill LLP (design)
  • Location Oak Ridge, TN
  • Date of Completion September 2015
  • System 3d printed atmospherically insulated panels (AIP), post-tensioning rods, photovoltaic (PV) roof panels
  • Products 20% carbon fiber reinforced ABS plastic
The building incorporates low-cost vacuum insulated panels into an additively manufactured shell, printed in 2’ widths in half ring profiles, assembled at Clayton Homes, the nation’s largest manufactured home builder. The vacuum insulated panels consist of Acrylonitrile butadiene styrene (ABS) with 20% carbon fiber reinforcement, a material which serves as a “starting point” for Jackson and his team: “We wanted to open up the door for people to say ‘what if?’ What if we used a non-traditional material to construct a building? I see this product as a ‘gateway.’ This might not be the final material we’ll end up using to construct buildings in the future. We’ll need to find locally available materials and utilize more cost-saving techniques. But we had to start somewhere. The ABS product will open the door for a conversation.” The project emerged out of fundamental questions concerning access to, and use of energy. Climate change, an increasing demand for renewable energy sources, and uncertainty in the balance of centralized versus distributed energy resources all impact the grid. In addition, more than 1.3 billion people worldwide have no access to an electric grid, and for an additional billion people, grid access is unreliable. AMIE will doubly function in the near future as an educational showcase to both the public who will learn of its story, and ORNL researchers who will continue to monitor how energy is generated, used, and stored. Will there be an AMIE 2.0? Jackson responds: “We don’t look at this as a one hit wonder. We really want this research to be the first stone thrown in the water that causes a ripple throughout the disciplines involved. Not only for us, but throughout the world. We want to put this out there so other smart people can look at it and brainstorm. If the end of the next project looks anything like AMIE 1.0, then we’ve missed the boat.”

MIT’s new ‘MultiFab’ 3D printer breakthrough capable of molding 10 materials at once

Soon, we might have 3D copy machines. Using powerful new technology, MIT's latest 3D printer boasts, according to Russia Today, almost "human-free usability" which allows it to print "ready to use" objects comprising of up to ten different materials. The development is being described by Gizmodo as a "giant leap" towards real-life replication as 3D printers strive for the ultimate goal of being able to produce functioning electronic parts. Already printers are capable of producing electronic circuits, however, MIT's printer named 'MultiFab' (echoing the name of the 'MultiVac' super-computer in Isaac Asimov's science fiction novel, The Last Question) is able to integrate these circuits into actual electronic components. This simplification of the manufacturing process hints at a future where a press of a button will be enough to produce such electronic mechanisms. A 3D scanner is also incorporated into the printer which allows the device to print onto existing components. This could mean that making future modifications to your smartphone, for example, is a very real possibility. Another advantage of this feature is that the printing process can be almost hands free. The scanner works in real time to make sure everything is aligned, telling the printer to make changes if necessary. In a release by the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT, the research team has described their printer as, "high-resolution, low-cost, extensible, and modular."  Advocating its possible use in education they also said that "students and teachers will be able to create complex mathematical figures, physics sets, lens systems, and anatomical models."