Posts tagged with "3d printed bridge":

Placeholder Alt Text

Robots prevail in our society, but what roles can they really play?

Amelie Klein is a curator at the Vitra Design Museum in Weil am Rhein, Germany, and she organized the show Hello, Robot. Design between Human and Machine, a centerpiece of the Vienna Biennale. The Architect's Newspaper (AN) sat down with Klein to discuss robots and the speculation that comes along with them. The Architect’s Newspaper: What role does speculation play in your new exhibition Hello, Robot., which is on view now as part of the Vienna Biennale? Amelie Klein: Well, it is funny because dealing with robots is inherently dealing with a lot of speculation. But our definition of “robot” is very broad, so it is not always so clear. What is a robot? Architect Carlo Ratti says there are three criteria: A robot must have sensors that gather; intelligence that interprets; and actuators, or tools, that produce a reaction. This is slightly different than what we usually consider to be a robot, which is more about doing something physical or having artificial intelligence. But if we look at the smartphone as a robot, we are not in the speculative; we are talking about the real. However, at the same time, the stuff we see that resembles science fiction robots is built to work for like five days, usually at a fair next to a highly sophisticated technician who will help make it run. So in that regard, it is not really as advanced as we might think. If you look at what is around, it is mostly all super fragile and doesn’t work at all. So robotics today is inherently speculative. But what about design? What role does design play in realizing new futures? Bruce Sterling always says, “Science fiction is never about the future, it is always about the present.” Speculation is looking at the present and taking it one step further. Paola Antonelli once gave a presentation in the mid-’90s about the future of work. She had commissioned a piece to Hella Jongerius, who came up with a bed with a screen built into the piece of furniture. Today, that is ridiculous to think of having [a bed with] a built-in screen, but at the same time we all work in bed. So people are articulating these ideas in a way that corresponds to our own reality today. Since the modernism movement, we have had this fetish of function—as if functionality is what makes design. I don’t think this is a very useful concept for what design can offer. Design practices like Dunne + Raby and Superflux use speculative design to talk about how we deal with our physical environment now. They are asking some very important questions, which has liberated design from this fetish of functionality. Do you see the same level of speculative thinking in architecture? There is certainly speculative thinking, such as Greg Lynn’s work or the Vertical Village. Archigram and Ant Farm were also highly speculative. In general, in the 1970s there were radical architects, but maybe this is not so prevalent anymore. What we have found in our research for this show is really well-researched architecture that isn’t necessarily speculative, it‘s just real—such as parametricism. We had this moment when all these architects came up with a new aesthetic that was born from the digital. But now people are really bored with that and they are looking at what else we can do with that technology. If you look at what Ratti is doing, he says that the medieval city will always look like the medieval city, but we will just use it differently. What is really new is actually invisible. The same is true for design. We might have new gadgets, but it might be more about how we interact with these objects, not how things look. It is interesting. It is almost impossible to build architecture that relates to technology, because it ends up obsolete with a few years and must be retrofit. Achim Menges is dealing with some of these issues at the University of Stuttgart’s Institute for Computational Design and Construction. He is asking, “What does it mean to have larger cities, and how will we deal with having to construct more buildings?” It is less about speculation; it is very much about nuts and bolts in a very architectural way. He is thinking about how we can use architecture like nature uses material. For example, every building is built to carry maximum weight, which is a waste of material. He looks at how we can save material. How much room for innovation is there? So we can speculate about new ways of making? I rarely get excited about a chair, unless it totally rethinks how to make a chair, such as the CurVoxels 3-D Printed Cantilever Chair, which is based on an algorithm that feeds into a robot that prints it in the air. It does for furniture design what Menges is doing for architecture. CurVoxels Design Research Group took the Panton Chair by Vernor Panton and tested a new method [of fabrication] with a very traditional chair. It is like the old analogy of the iron bridge, where it looks like a wooden bridge, even though it’s made of this new material. We are figuring out still what the possibility of these materials is and what that might mean for making and what that might mean for aesthetics. So how can design speculate about the city? One thing that is very fresh and prescient is a project by Dunne & Raby called United Micro Kingdoms, where they reimagined how four communities would live. For example, the digitarians would have a society that was quite authoritarian. It is also kind of neoliberal, as they are obsessed with cost efficiency, etc. It raises issues that we might not be thinking about, like how do we pay for autonomous vehicles? We may not own these self-driving cars—we might have to share and rent them. We have these great visions of the city without congestion and everything is running smoothly, but it likely won’t happen that way. We will probably see something more like what Dunne & Raby came up with, which is very easyJet-like, with bare-bones amenities. If you pay more, it might be luxurious with more privacy and speed. This is how we live today, so why would it change? There is hope. Superflux was invited by one of the Arab Emirates to give a presentation about potential cities of the future. They suggested that cars must be given up, and these oil sheiks, who are filthy rich, said, “Forget it! I am not going to do that, my son is not going to do that!” Superflux anticipated this and, working with scientists and physicists, created a series of air samples that illustrated what the air would smell like if we don’t change our present habits. It worked to convince them. The sheiks didn’t want their sons [sic] to live in air like that. This can be very powerful, if designers look to social progress rather than simply working within the neoliberal or market frameworks. All this technology is being sold as changing the world, but how are Airbnb or Uber changing the world? They are undermining conventions in society that we have worked for centuries to install. They are not saving the world, they are taking us steps backwards, and it is causing disenchantment and disappointment. Critical thinking is all we have to avoid these hyper-efficient futures. The experiments might be inefficient, but we need that and we need speculation to move forward.
Placeholder Alt Text

New robot technology by Dutch designer can 3D-print a steel bridge in mid-air over a canal

New to the list of job functions up for replacement by technology: bridge construction. Dutch designer Joris Laarman has founded MX3D, a research and development company currently tinkering with a never-before-seen 3D printer that can weld steel objects in mid-air. In 2017, Laarman will deposit the robot on the banks of a canal in Amsterdam and walk away. When he returns two months later, a 24-foot steel bridge will arc over the canal, built utterly without human intervention yet capable of accommodating normal foot traffic for decades. This potentially revolutionizing technology by MX3D and Autodesk can “draw” and fabricate city infrastructure on location, which has radical implications for the construction industry. Far from being makeshift, the finished bridge will feature an intricate design that looks more handcrafted than the detailing on a typical bridge. 3D printing allows for granular control of detail that industrial manufacturing does not, accommodating designs that are more ornate and bespoke than the detailing on most bridges. While 3D printers normally transact in resin or plastic, Laarman’s bridge will be fabricated from a steel composite developed by the Delft University of Technology in the Netherlands. It will be as strong as regular steel but can be dolloped drop by drop by a 3D printer. The unique printer itself has no printer bed. Using additive printing technology, it “works like a train,” according to Fast Company. “Except instead of running along existing tracks it prints out its own as it goes along.” The six-axis robot can move horizontally, vertically and even diagonally, and can hence traverse gaps like a canal or the empty space between walls. “We thought to ourselves: what is the most iconic thing we could print in public that would show off what our technology is capable of?” Laarman told Fast Company. “This being the Netherlands we decided a bridge over an old canal was a pretty good choice. Not only is it good for publicity, but if MX3D can construct a bridge out of thin air, it can construct anything.” Laarman enlisted design and engineering software company Autodesk to help rectify common 3D printing glitches – namely, designing a robot with a real-time feedback loop capable of correcting itself when errors occur. Typically, when a drop of resin is misplaced, the robot has no way of “knowing,” so that all subsequent drops are misplaced and the design is maimed. Given that the robot will build in public, foreseeable errors extend beyond internal mechanical failures. The machine must be primed to withstand temperature fluctuations that cause metal to expand and even “kids hurling beer bottles at the robot.” “Robots tend to assume that the universe is made of absolutes, even though that’s not true,” said Maurice Conti, head of Autodesk’s Applied Research Lab. “So we need to program them to have real-time feedback loops, and adapt in real time without even being told to.” If successful, MX3D’s technology could open up avenues for unprecedented design possibilities and cost efficiency in the fields of construction, architecture, design, and more.