CLOSE AD ×

Among the Sequoias, a 3D-Printed Refuge by Smith|Allen

Among the Sequoias, a 3D-Printed Refuge by Smith|Allen

Smith|Allen’s 3D-printed forest refuge is inspired by the site’s patterning and historical cycle of deforestation and regeneration.

When Brian Allen and Stephanie Smith first visited the sequoia forest in Gualala, California, they saw patterns everywhere. “We were really intrigued by patterning at many scales, from bark on the trees to light through the trees and also, at a micro scale, [the cells of] the sequioas,” said Allen. Two months later the pair was back, this time with 580 sculptural bricks forming the world’s first 3D-printed architectural installation. Translucent white and 10 by 10 by 8 feet in size, Echoviren resembles a cross between a teepee and a tree stump, a mass made light by the organic porosity of the bricks.

Echoviren is intimately tied to its site on the grounds of Project 387, the residency in which Smith|Allen participated last fall. Besides the sequioas’ patterning, the designers drew inspiration from the primitiveness of their surroundings. “The overall form was driven by what is the most basic space we could make,” said Allen. “It turns [out to be] just a small oblong enclosure with an oculus, a small forest hermitage.” The oculus draws the eye up, to the natural roof formed by the sequioas’ branches. In addition, Smith|Allen address the history of the site as a place where regrowth followed the trauma of deforestation. Built of bio-plastic, Echoviren has an estimated lifespan of 30-50 years. “The 50 year decomposition is a beautiful echo of that cycle” of deforestation and resurgence, said Allen.

Smith|Allen took a flexible approach to Echoviren’s design, alternating between analog and digital tools. They used tracing paper to extract patterns from photographs of sequoia cells, then trimmed and propagated the patterning by hand. “We initially tried to do it parametrically in Grasshopper, to replicate that cell structure as a generative tool, but we weren’t getting good results,” explained Allen. “For us, the parametric tools were more of a tool set than a generator.” 

  • Fabricator Smith|Allen
  • Designers Smith|Allen
  • Location Gualala, California
  • Date of Completion August 2013
  • Material plant-based PLA bio-plastic, silicon adhesive
  • Process drawing, tracing, 3D printing, Illustrator, Rhino, Grasshopper, KISSlicer, snap fit, gluing, digging

Smith|Allen used KISSlicer to estimate the time required to print Echoviren, 10,800 hours in all. The designers ran seven consumer-grade Type A Machines Series 1 desktop 3D printers for two months straight. They used plant-based PLA bio-plastic, which in addition to being biodegradable, is also readily available. “We wanted to use something commercially available and easy to get our hands on,” said Allen. “The project was not about using inaccessible materials; accessibility gave us the tools to do this.”

On-site assembly took four hours. Echoviren is a snap fit system, with dovetail joints in the XY and a pin and socket in the Z. Silicon adhesive secures each layer of bricks to the next. The bottom ring of bricks nestles within a hand-dug trench. Pyramidal in section, Echoviren is a compression structure. Its components vary in thickness from 6-8 inches at the bottom to less than an inch at the top.

For Smith and Allen, the magic of Echoviren is twofold. First is the anticipation of the future, of the way the form will change as it decomposes. Just as important is how the installation came to be, how the technology of 3D printing enabled a firm of two to build Echoviren in less than a season. “As young designers, we struggle with getting our work out there and getting it built,” said Allen. “Using 3D printers, we’re able to really increase the amount of stuff we can do in a given time and transition it from a tool of prototyping and model building into real things.”

CLOSE AD ×